skip to main content


Title: Thresholded graphical lasso adjusts for latent variables
Summary

Structural learning of Gaussian graphical models in the presence of latent variables has long been a challenging problem. Chandrasekaran et al. (2012) proposed a convex program for estimating a sparse graph plus a low-rank term that adjusts for latent variables; however, this approach poses challenges from both computational and statistical perspectives. We propose an alternative, simple solution: apply a hard-thresholding operator to existing graph selection methods. Conceptually simple and computationally attractive, the approach of thresholding the graphical lasso is shown to be graph selection consistent in the presence of latent variables under a simpler minimum edge strength condition and at an improved statistical rate. The results are extended to estimators for thresholded neighbourhood selection and constrained $\ell_{1}$-minimization for inverse matrix estimation as well. We show that our simple thresholded graph estimators yield stronger empirical results than existing methods for the latent variable graphical model problem, and we apply them to a neuroscience case study on estimating functional neural connections.

 
more » « less
Award ID(s):
1707400
NSF-PAR ID:
10470624
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Pres
Date Published:
Journal Name:
Biometrika
Volume:
110
Issue:
3
ISSN:
0006-3444
Page Range / eLocation ID:
681 to 697
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Sparse high dimensional graphical model selection is a topic of much interest in modern day statistics. A popular approach is to apply l  1-penalties to either parametric likelihoods, or regularized regression/pseudolikelihoods, with the latter having the distinct advantage that they do not explicitly assume Gaussianity. As none of the popular methods proposed for solving pseudolikelihood-based objective functions have provable convergence guarantees, it is not clear whether corresponding estimators exist or are even computable, or if they actually yield correct partial correlation graphs. We propose a new pseudolikelihood-based graphical model selection method that aims to overcome some of the shortcomings of current methods, but at the same time retain all their respective strengths. In particular, we introduce a novel framework that leads to a convex formulation of the partial covariance regression graph problem, resulting in an objective function comprised of quadratic forms. The objective is then optimized via a co-ordinatewise approach. The specific functional form of the objective function facilitates rigorous convergence analysis leading to convergence guarantees; an important property that cannot be established by using standard results, when the dimension is larger than the sample size, as is often the case in high dimensional applications. These convergence guarantees ensure that estimators are well defined under very general conditions and are always computable. In addition, the approach yields estimators that have good large sample properties and also respect symmetry. Furthermore, application to simulated and real data, timing comparisons and numerical convergence is demonstrated. We also present a novel unifying framework that places all graphical pseudolikelihood methods as special cases of a more general formulation, leading to important insights.

     
    more » « less
  2. Nonparametric estimation of multivariate functions is an important problem in statisti- cal machine learning with many applications, ranging from nonparametric regression to nonparametric graphical models. Several authors have proposed to estimate multivariate functions under the smoothing spline analysis of variance (SSANOVA) framework, which assumes that the multivariate function can be decomposed into the summation of main effects, two-way interaction effects, and higher order interaction effects. However, existing methods are not scalable to the dimension of the random variables and the order of inter- actions. We propose a LAyer-wiSE leaRning strategy (LASER) to estimate multivariate functions under the SSANOVA framework. The main idea is to approximate the multivari- ate function sequentially starting from a model with only the main effects. Conditioned on the support of the estimated main effects, we estimate the two-way interaction effects only when the corresponding main effects are estimated to be non-zero. This process is con- tinued until no more higher order interaction effects are identified. The proposed strategy provides a data-driven approach for estimating multivariate functions under the SSANOVA framework. Our proposal yields a sequence of estimators. To study the theoretical prop- erties of the sequence of estimators, we establish the notion of post-selection persistency. Extensive numerical studies are performed to evaluate the performance of LASER. 
    more » « less
  3. We consider the problem of estimating the structure of an undirected weighted sparse graphical model of multivariate data under the assumption that the underlying distribution is multivariate totally positive of order 2, or equivalently, all partial correlations are non-negative. Total positivity holds in several applications. The problem of Gaussian graphical model learning has been widely studied without the total positivity assumption where the problem can be formulated as estimation of the sparse precision matrix that encodes conditional dependence between random variables associated with the graph nodes. An approach that imposes total positivity is to assume that the precision matrix obeys the Laplacian constraints which include constraining the off-diagonal elements of the precision matrix to be non-positive. In this paper we investigate modifications to widely used penalized log-likelihood approaches to enforce total positivity but not the Laplacian structure. An alternating direction method of multipliers (ADMM) algorithm is presented for constrained optimization under total positivity and lasso as well as adaptive lasso penalties. Numerical results based on synthetic data show that the proposed constrained adaptive lasso approach significantly outperforms existing Laplacian-based approaches, both statistical and smoothness-based non-statistical. 
    more » « less
  4. Abstract

    Probabilistic graphical models have become an important unsupervised learning tool for detecting network structures for a variety of problems, including the estimation of functional neuronal connectivity from two‐photon calcium imaging data. However, in the context of calcium imaging, technological limitations only allow for partially overlapping layers of neurons in a brain region of interest to be jointly recorded. In this case, graph estimation for the full data requires inference for edge selection when many pairs of neurons have no simultaneous observations. This leads to the graph quilting problem, which seeks to estimate a graph in the presence of block‐missingness in the empirical covariance matrix. Solutions for the graph quilting problem have previously been studied for Gaussian graphical models; however, neural activity data from calcium imaging are often non‐Gaussian, thereby requiring a more flexible modelling approach. Thus, in our work, we study two approaches for nonparanormal graph quilting based on the Gaussian copula graphical model, namely, a maximum likelihood procedure and a low rank‐based framework. We provide theoretical guarantees on edge recovery for the former approach under similar conditions to those previously developed for the Gaussian setting, and we investigate the empirical performance of both methods using simulations as well as real data calcium imaging data. Our approaches yield more scientifically meaningful functional connectivity estimates compared to existing Gaussian graph quilting methods for this calcium imaging data set.

     
    more » « less
  5. Abstract

    Varying coefficient models have been used to explore dynamic effects in many scientific areas, such as in medicine, finance, and epidemiology. As most existing models ignore the existence of zero regions, we propose a new soft-thresholded varying coefficient model, where the coefficient functions are piecewise smooth with zero regions. Our new modeling approach enables us to perform variable selection, detect the zero regions of selected variables, obtain point estimates of the varying coefficients with zero regions, and construct a new type of sparse confidence intervals that accommodate zero regions. We prove the asymptotic properties of the estimator, based on which we draw statistical inference. Our simulation study reveals that the proposed sparse confidence intervals achieve the desired coverage probability. We apply the proposed method to analyze a large-scale preoperative opioid study.

     
    more » « less