skip to main content

Title: On High-Dimensional Graph Learning Under Total Positivity
We consider the problem of estimating the structure of an undirected weighted sparse graphical model of multivariate data under the assumption that the underlying distribution is multivariate totally positive of order 2, or equivalently, all partial correlations are non-negative. Total positivity holds in several applications. The problem of Gaussian graphical model learning has been widely studied without the total positivity assumption where the problem can be formulated as estimation of the sparse precision matrix that encodes conditional dependence between random variables associated with the graph nodes. An approach that imposes total positivity is to assume that the precision matrix obeys the Laplacian constraints which include constraining the off-diagonal elements of the precision matrix to be non-positive. In this paper we investigate modifications to widely used penalized log-likelihood approaches to enforce total positivity but not the Laplacian structure. An alternating direction method of multipliers (ADMM) algorithm is presented for constrained optimization under total positivity and lasso as well as adaptive lasso penalties. Numerical results based on synthetic data show that the proposed constrained adaptive lasso approach significantly outperforms existing Laplacian-based approaches, both statistical and smoothness-based non-statistical.
Award ID(s):
2040536 1617610
Publication Date:
Journal Name:
22021 55th Asilomar Conference on Signals, Systems, and Computers
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of estimating the structure of an undirected weighted sparse graph underlying a set of signals, exploiting both smoothness of the signals as well as their statistics. We augment the objective function of Kalofolias (2016) which is motivated by a signal smoothness viewpoint and imposes a Laplacian constraint, with a penalized log-likelihood objective function with a lasso constraint, motivated from a statistical viewpoint. Both of these objective functions are designed for estimation of sparse graphs. An alternating direction method of multipliers (ADMM) algorithm is presented to optimize the augmented objective function. Numerical results based on synthetic data show that the proposed approach improves upon Kalofolias (2016) in estimating the inverse covariance, and improves upon graphical lasso in estimating the graph topology. We also implement an adaptive version of the proposed algorithm following adaptive lasso of Zou (2006), and empirically show that it leads to further improvement in performance.
  2. Multi‐view data have been routinely collected in various fields of science and engineering. A general problem is to study the predictive association between multivariate responses and multi‐view predictor sets, all of which can be of high dimensionality. It is likely that only a few views are relevant to prediction, and the predictors within each relevant view contribute to the prediction collectively rather than sparsely. We cast this new problem under the familiar multivariate regression framework and propose an integrative reduced‐rank regression (iRRR), where each view has its own low‐rank coefficient matrix. As such, latent features are extracted from each view in a supervised fashion. For model estimation, we develop a convex composite nuclear norm penalization approach, which admits an efficient algorithm via alternating direction method of multipliers. Extensions to non‐Gaussian and incomplete data are discussed. Theoretically, we derive non‐asymptotic oracle bounds of iRRR under a restricted eigenvalue condition. Our results recover oracle bounds of several special cases of iRRR including Lasso, group Lasso, and nuclear norm penalized regression. Therefore, iRRR seamlessly bridges group‐sparse and low‐rank methods and can achieve substantially faster convergence rate under realistic settings of multi‐view learning. Simulation studies and an application in the Longitudinal Studies of Agingmore »further showcase the efficacy of the proposed methods.« less
  3. Since the cost of labeling data is getting higher and higher, we hope to make full use of the large amount of unlabeled data and improve image classification effect through adding some unlabeled samples for training. In addition, we expect to uniformly realize two tasks, namely the clustering of the unlabeled data and the recognition of the query image. We achieve the goal by designing a novel sparse model based on manifold assumption, which has been proved to work well in many tasks. Based on the assumption that images of the same class lie on a sub-manifold and an image can be approximately represented as the linear combination of its neighboring data due to the local linear property of manifold, we proposed a sparse representation model on manifold. Specifically, there are two regularizations, i.e., a variant Trace lasso norm and the manifold Laplacian regularization. The first regularization term enables the representation coefficients satisfying sparsity between groups and density within a group. And the second term is manifold Laplacian regularization by which label can be accurately propagated from labeled data to unlabeled data. Augmented Lagrange Multiplier (ALM) scheme and Gauss Seidel Alternating Direction Method of Multiplier (GS-ADMM) are given to solvemore »the problem numerically. We conduct some experiments on three human face databases and compare the proposed work with several state-of-the-art methods. For each subject, some labeled face images are randomly chosen for training for those supervised methods, and a small amount of unlabeled images are added to form the training set of the proposed approach. All experiments show our method can get better classification results due to the addition of unlabeled samples.« less
  4. We consider the problem of inferring the conditional independence graph (CIG) of a high-dimensional stationary multivariate Gaussian time series. A p-variate Gaussian time series graphical model associated with an undirected graph with p vertices is defined as the family of time series that obey the conditional independence restrictions implied by the edge set of the graph. A sparse-group lasso-based frequency-domain formulation of the problem has been considered in the literature where the objective is to estimate the inverse power spectral density (PSD) of the data via optimization of a sparse-group lasso based penalized log-likelihood cost function that is formulated in the frequency-domain. The CIG is then inferred from the estimated inverse PSD. In this paper we establish sufficient conditions for consistency of the inverse PSD estimator resulting from the sparse-group graphical lasso-based approach.
  5. Graphs have been commonly used to represent complex data structures. In models dealing with graph-structured data, multivariate parameters may not only exhibit sparse patterns but have structured sparsity and smoothness in the sense that both zero and non-zero parameters tend to cluster together. We propose a new prior for high-dimensional parameters with graphical relations, referred to as the Tree-based Low-rank Horseshoe (T-LoHo) model, that generalizes the popular univariate Bayesian horseshoe shrinkage prior to the multivariate setting to detect structured sparsity and smoothness simultaneously. The T-LoHo prior can be embedded in many high-dimensional hierarchical models. To illustrate its utility, we apply it to regularize a Bayesian high-dimensional regression problem where the regression coefficients are linked by a graph, so that the resulting clusters have flexible shapes and satisfy the cluster contiguity constraint with respect to the graph. We design an efficient Markov chain Monte Carlo algorithm that delivers full Bayesian inference with uncertainty measures for model parameters such as the number of clusters. We offer theoretical investigations of the clustering effects and posterior concentration results. Finally, we illustrate the performance of the model with simulation studies and a real data application for anomaly detection on a road network. The results indicatemore »substantial improvements over other competing methods such as the sparse fused lasso.« less