skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Compositae in a Crate: an outreach initiative to promote plant awareness
Studies on the perception of animals and plants often report that students prefer to learn more about animals than plants and usually have more difficultly noticing plants in the environment. This could impact conservation programs and initiatives, as animals are often considered more important and may be deemed worthier of conservation efforts. Providing students an opportunity to connect to plants and understand how they affect their lives is one step toward raising awareness around this issue. Compositae, also known as Asteraceae or the sunflower family, is the largest family of flowering plants, accounting for ~10% of flowering plant diversity in the world. They are present in virtually all biomes and environments and fulfill multiple ecological niches. Some members of the family are widely cultivated as crops, such as sunflower, lettuce, artichoke, and chicory; several species are grown as ornamental plants; and others are used in the pharmaceutical and chemical industry. Compositae’s presence in so many contexts make the family a good candidate for activities aiming to increase plant awareness, as several Compositae species are already present in our everyday lives. Here we present Compositae in a Crate, a teacher-guided outreach activity aimed at the 4th and 5th school grades. This crate of activities contains four different modules focusing on different aspects of the sunflower family: biodiversity, morphology, society, and genomics. Each module has different learning objectives and can be used independently from each other. A guide and different activities, such as flash cards, puzzles, and 3D models, are provided in each module. The activities will be prepared to meet the national and state of Tennessee education standards for the 4th and 5th grades. The produced crates will be available at different institutions and all materials will be made available online so other interested parties can produce their own crates.  more » « less
Award ID(s):
2214472
PAR ID:
10470637
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Association of Southeastern Biologists, Inc.
Date Published:
Volume:
70
Issue:
1
ISSN:
1533-8436
Page Range / eLocation ID:
133
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PremiseA family‐specific probe set for sunflowers, Compositae‐1061, enables family‐wide phylogenomic studies and investigations at lower taxonomic levels, but may lack resolution at genus to species levels, especially in groups complicated by polyploidy and hybridization. MethodsWe developed a Hyb‐Seq probe set, Compositae‐ParaLoss‐1272, that targets orthologous loci in Asteraceae. We tested its efficiency across the family by simulating target enrichment sequencing in silico. Additionally, we tested its effectiveness at lower taxonomic levels in the historically complex genusPackera. We performed Hyb‐Seq with Compositae‐ParaLoss‐1272 for 19Packerataxa that were previously studied using Compositae‐1061. The resulting sequences from each probe set, plus a combination of both, were used to generate phylogenies, compare topologies, and assess node support. ResultsWe report that Compositae‐ParaLoss‐1272 captured loci across all tested Asteraceae members, had less gene tree discordance, and retained longer loci than Compositae‐1061. Most notably, Compositae‐ParaLoss‐1272 recovered substantially fewer paralogous sequences than Compositae‐1061, with only ~5% of the recovered loci reporting as paralogous, compared to ~59% with Compositae‐1061. DiscussionGiven the complexity of plant evolutionary histories, assigning orthology for phylogenomic analyses will continue to be challenging. However, we anticipate Compositae‐ParaLoss‐1272 will provide improved resolution and utility for studies of complex groups and lower taxonomic levels in the sunflower family. 
    more » « less
  2. • Understanding plants and how they affect the world is crucial. However, plant awareness disparity, the inability to notice plants, is common and results in lack of interest and positive attitudes toward plants and knowledge on their importance. Innovative and engaging plant science curricula is limited while needed to promote plant awareness. We created a 3D plant modeling module and examined its impact on plant awareness among high school students. • This module integrates science, art, design, and technology through a project-based STEAM approach where teachers acted as facilitators and students worked collaboratively. Students investigated the biology and importance of plants, created 3D plant models, experienced the application of 3D modeling in augmented and virtual reality platforms, and disseminated their results. Before and after the module, students completed the Plant Awareness Disparity Index and answered reflection questions about its components—attention, attitude, relative interest, and knowledge. • Quantitative analysis revealed that after completing the module, more students had positive statements about attention, attitude, and knowledge about plants and showed higher relative interest toward plants than animals. Student reflections showed that plants were the most notable feature outdoors, and students had mainly positive feelings toward plants. However, many students wrote that animals were more interesting than plants. Most students acknowledged the importance of plants for humans and the environment. • Our results indicated that our 3D plant modeling module positively influenced student plant awareness. This module can be implemented in any educational learning environment for high school students, including in-person and virtually. 
    more » « less
  3. Wild pollinators are critical to maintaining ecosystem services and facilitating crop production, but habitat degradation and resource loss are leading to worldwide pollinator declines. Nutrient enrichment and changes in rainfall due to global warming are drivers of global environmental change, and likely to impact pollinator foraging behavior and reproductive success through changes to the growth and phenology of flowering plants. Here, we provide a short review of pollinator conservation in the context of nutritional ecology and plant-pollinator interactions. Then, we present novel research into the effects of nutrient and rainfall variation on plant phenology. In this study, we experimentally manipulated the amount of water and supplemental nutrients available to wild sunflower (Helianthus annuus) and goldenrod (Solidagospp.) throughout their growing season. We evaluated how changes in growth and bloom time could impact resource availability for bumble bee (Bombus impatiens) queens preparing to overwinter. We found that fertilizer and rainfall alter plant bloom time by 2–18 days, though flowering response was species-specific. Fertilizer did not significantly affect plant growth or number of flowers produced when plants were grown under drought conditions. When water was not limiting, fertilized sunflowers bloomed in floral pulses. These findings carry important implications for growers and land managers, providing insight into potential drivers of wild pollinator decline and possible conservation strategies. 
    more » « less
  4. Flowering plants (angiosperms) perform a unique double fertilization in which two sperm cells fuse with two female gamete cells in the embryo sac to develop a seed. Furthermore, during land plant evolution, the mode of sexual reproduction has been modified dramatically from motile sperm in the early-diverging land plants, such as mosses and ferns as well as some gymnosperms (Ginkgo and cycads) to nonmotile sperm that are delivered to female gametes by the pollen tube in flowering plants. Recent studies have revealed the cellular dynamics and molecular mechanisms for the complex series of double fertilization processes and elucidated differences and similarities between animals and plants. Here, together with a brief comparison with animals, we review the current understanding of flowering plant zygote dynamics, covering from gamete nuclear migration, karyogamy, and polyspermy block, to zygotic genome activation as well as asymmetrical division of the zygote. Further analyses of the detailed molecular and cellular mechanisms of flowering plant fertilization should shed light on the evolution of the unique sexual reproduction of flowering plants. 
    more » « less
  5. null (Ed.)
    Abstract This year marks the 100 th anniversary of the experiments by Garner and Allard (Garner and Allard, 1920) that showed that plants measure the duration of the night and day (the photoperiod) to time flowering. This discovery led to the identification of Flowering Locus T (FT) in Arabidopsis and Heading Date 3a (Hd3a) in rice as a mobile signal that promotes flowering in tissues distal to the site of cue perception. FT/Hd3a belong to the family of phosphatidylethanolamine binding proteins (PEBPs). Collectively, these proteins control plant developmental transitions and plant architecture. Several excellent recent reviews have focused on the roles of PEBP proteins in diverse plant species; here we will primarily highlight recent advances that enhance our understanding of the mechanism of action of PEBP proteins and discuss critical open questions. 
    more » « less