skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Overemphasized role of preceding strong El Niño in generating multi-year La Niña events
Abstract Previous studies have emphasized the significance of a strong El Niño preceding La Niña (LN) in the formation of multi-year LN events due to the slow recharge-discharge ocean heat content process. However, observational analyses from 1900 to 2022 reveal that the majority (64%) of multi-year LN events did not necessitate a preceding strong El Niño to generate their second LN, suggesting an overemphasis on traditional views. Instead, here we show that a negative phase of the North Pacific Meridional Mode (PMM) during spring, when the first LN begins to decay, activates the mechanism responsible for triggering another LN and producing a multi-year event. The westward extension of the first LN’s cold anomalies, which interact directly with the eastern edge of the western Pacific warm pool, is highlighted as a crucial factor in the occurrence of a negative PMM. Additionally, the PMM mechanism can create a third LN, leading to triple-dip events.  more » « less
Award ID(s):
2109539
PAR ID:
10470700
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study investigates boreal spring events of Pacific Meridional Mode (PMM) from 1950 to 2022, revealing that cold PMM is more effective in triggering subsequent La Niña compared to warm PMM's induction of following El Niño. This asymmetry stems from the varying origins and sub‐efficacies of PMM groups. The cold PMM is primarily initiated by pre‐existing La Niña, while the warm PMM is comparably activated by pre‐existing El Niño and internal atmospheric dynamics. PMMs initiated by pre‐existing El Niño or La Niña play a crucial role in determining the efficacies of PMMs in triggering subsequent El Niño‐Southern Oscillation (ENSO). The strong discharge of pre‐existing El Niño hampers warm PMM's induction of subsequent El Niño, whereas weak recharge from pre‐existing La Niña enhances the efficacy of cold PMM in inducing subsequent La Niña. Comprehending not only the PMM phase but also its origin is crucial for ENSO research and prediction. 
    more » « less
  2. Abstract Multi-year El Niño-Southern Oscillation (ENSO) events, where the warming (El Niño) or cooling (La Niña) extends beyond a single year, have become increasingly prominent in recent decades. Using observations and climate model simulations, we show that the South Pacific Oscillation (SPO) plays a crucial, previously unrecognized role in determining whether ENSO evolves into a multi-year event. Specifically, when an El Niño (La Niña) triggers a positive (negative) SPO in the extratropical Southern Hemisphere during its decaying phase, the SPO feedbacks onto the tropical Pacific through the wind-evaporation-sea surface temperature mechanism, helping sustain ENSO into a multi-year event. This SPO–ENSO interaction is absent in single-year ENSO events. Furthermore, whether ENSO can trigger the SPO depends systematically on the central SST anomaly location for El Niños and the anomaly intensity for La Niñas, with interference from atmospheric internal variability. These findings highlight the importance of including off-equatorial processes from the Southern Hemisphere in studies of ENSO complexity dynamics. 
    more » « less
  3. The temporal evolution of El Niño and La Niña varies greatly from event to event. To understand the dynamical processes controlling the duration of El Niño and La Niña events, a suite of observational data and a long control simulation of the Community Earth System Model, version 1, are analyzed. Both observational and model analyses show that the duration of El Niño is strongly affected by the timing of onset. El Niño events that develop early tend to terminate quickly after the mature phase because of the early arrival of delayed negative oceanic feedback and fast adjustments of the tropical Atlantic and Indian Oceans to the tropical Pacific Ocean warming. The duration of La Niña events is, on the other hand, strongly influenced by the amplitude of preceding warm events. La Niña events preceded by a strong warm event tend to persist into the second year because of large initial discharge of the equatorial oceanic heat content and delayed adjustments of the tropical Atlantic and Indian Oceans to the tropical Pacific cooling. For both El Niño and La Niña, the interbasin sea surface temperature (SST) adjustments reduce the anomalous SST gradient toward the tropical Pacific and weaken surface wind anomalies over the western equatorial Pacific, hastening the event termination. Other factors external to the dynamics of El Niño–Southern Oscillation, such as coupled variability in the tropical Atlantic and Indian Oceans and atmospheric variability over the North Pacific, also contribute to the diversity of event duration. 
    more » « less
  4. Abstract Using hindcasts produced by a coupled climate model, this study evaluates whether the model can forecast the observed spatiotemporal complexity in the El Niño−Southern Oscillation (ENSO) during the period 1982−2011: the eastern Pacific (EP), central Pacific‐I (CP‐I) and ‐II (CP‐II) types of El Niño, and the multi‐year evolution events of El Niño occurred in 1986–1988 (i.e., 1986/87/88 El Niño) and La Niña occurred in 1998–2000 (i.e., 1998/99/00 La Niña). With regard to the spatial complexity, it is found that the CP‐I type of El Niño is the easiest to hindcast, the CP‐II is second, and the EP is most difficult to hindcast as its amplitude is significantly underestimated in the model used here. The model deficiency in hindcasting the EP El Niño is related to a warm bias in climatological sea surface temperatures (SSTs) in the tropical eastern Pacific. This warm bias is related to model biases in the strengths of the Pacific Walker circulation and South Pacific high, both of which are notably weaker than observed. As for the temporal complexity, the model successfully hindcasts the multi‐year evolution of the 1998/99/00 La Niña but fails to accurately hindcast the 1986/87/88 El Niño. This contrasting model performance in hindcasting multi‐year events is found to be related to a cold bias in climatological SSTs in the tropical central Pacific. This cold bias result enables the model La Niña, but not El Niño, to activate intrabasin tropical‒subtropical interactions associated with the Pacific Meridional Mode that produce the multi‐year evolution pattern. 
    more » « less
  5. Abstract The 2023/24 El Niño commenced with an exceptionally large warm water volume in the equatorial western Pacific, comparable to the extreme 1997/98 and 2015/16 events, but did not develop into a super El Niño. This study highlights the critical role of contrasting Northern Pacific Meridional Mode (NPMM) conditions in this divergence. Warm NPMM conditions during the 1997/98 and 2015/16 events created a positive zonal sea surface temperature (SST) gradient in the equatorial western-central Pacific and enhanced Madden-Julian Oscillation (MJO) propagation, driving sustained westerly wind bursts (WWBs) and downwelling Kelvin waves that intensified both events. In contrast, the cold NPMM during 2023/24 induced a negative SST gradient and suppressed MJO activity, resulting in weaker WWBs and limited eastward wave activity, preventing the event from reaching super El Niño intensity. A 2,200-year CESM1 pre-industrial simulation corroborates these observational findings, underscoring the importance of NPMM interference in improving El Niño intensity predictions. 
    more » « less