The availability of multiple sequenced genomes from a single species made it possible to explore intra- and inter-specific genomic comparisons at higher resolution and build clade-specific pan-genomes of several crops. The pan-genomes of crops constructed from various cultivars, accessions, landraces, and wild ancestral species represent a compendium of genes and structural variations and allow researchers to search for the novel genes and alleles that were inadvertently lost in domesticated crops during the historical process of crop domestication or in the process of extensive plant breeding. Fortunately, many valuable genes and alleles associated with desirable traits like disease resistance, abiotic stress tolerance, plant architecture, and nutrition qualities exist in landraces, ancestral species, and crop wild relatives. The novel genes from the wild ancestors and landraces can be introduced back to high-yielding varieties of modern crops by implementing classical plant breeding, genomic selection, and transgenic/gene editing approaches. Thus, pan-genomic represents a great leap in plant research and offers new avenues for targeted breeding to mitigate the impact of global climate change. Here, we summarize the tools used for pan-genome assembly and annotations, web-portals hosting plant pan-genomes, etc. Furthermore, we highlight a few discoveries made in crops using the pan-genomic approach and future potential of this emerging field of study.
more »
« less
Improving rotational partners: Intraspecies variation for pea cover cropping traits
Abstract To improve cover crops such as peas (Pisum sativum), as rotational partners, intraspecific variation for cover cropping traits such as nutrient mobilization, carbon deposition, and beneficial microbial recruitment must be identified. The majority of research on cover crops has focused on interspecies comparisons for cover cropping variation with minimal research investigating intraspecies variation. To address if variation of cover cropping traits is present within a cover cropping species, we grew 15 diverse accessions (four modern cultivars, three landraces, and eight wild accessions) of pea in a certified organic setting. We measured various cover cropping traits, such as nutrient mobilization, soil organic matter deposition, and microbial recruitment, and quantified the effect of pea accession on the growth and yield of a subsequently planted crop of corn (Zea mays). We discovered that the domestication history of pea has a significant impact on soil properties. Specifically, domesticated peas (modern cultivars and landraces) had higher average plant–soil feedback values for amounts of nitrogen, carbon, and manganese compared to wild peas. Additionally, no variation for prokaryotic recruitment (α‐ and β‐diversity) was observed within pea; however, we did observe significant variation for fungal recruitment (α‐ and β‐diversity) due to domestication and accession. Our results demonstrate that there is variation present in peas, and likely all crops, that can be selected to improve them as rotational partners to ultimately boost crop yields in sustainable agroecosystems.
more »
« less
- Award ID(s):
- 2120153
- PAR ID:
- 10511012
- Publisher / Repository:
- Agrosystems, Geosciences, and Environment
- Date Published:
- Journal Name:
- Agrosystems, Geosciences & Environment
- Volume:
- 7
- Issue:
- 2
- ISSN:
- 2639-6696
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Day neutrality, or insensitivity to photoperiod (day length), is an important domestication trait in many crop species. Although the oilseed cropCamelina sativahas been cultivated since the Neolithic era, day-neutral accessions have yet to be described. We sought to leverage genetic diversity in existing germplasms to identifyC. sativaaccessions with low photoperiod sensitivity for future engineering of this trait. We quantified variation in the photoperiod response across 161 accessions ofC. sativaby measuring hypocotyl length of four-day-old seedlings grown in long-day and short-day conditions, finding wide variation in photoperiod response. Similarly, soil-grown adult plants from selected accessions showed variation in photoperiod response in several traits; however, photoperiod responses in seedling and adult traits were not correlated, suggesting complex mechanistic underpinnings. Although RNA-seq experiments of the reference accession Licalla identified several differentially regulatedArabidopsissyntelogs involved in photoperiod response, includingCOL2, FT, LHYandWOX4, expression of these genes in the accessions did not correlate with differences in their photoperiod sensitivity. Taken together, we show that all tested accessions show some degree of photoperiod response, and that this trait is likely complex, involving several and separable seedling and adult traits. Significance StatementDay neutrality (photoperiod insensitivity) is a common trait in domesticated crops; however, the ancient oilseed cropCamelina sativahas remained photoperiod-sensitive, which likely limits seed yields. Here, we show that photoperiod sensitivity is conserved across manyC. sativacultivars, albeit to different degrees, and we establish that photoperiod sensitivity is a complex trait, which will require genetic engineering to achieve day neutrality.more » « less
-
Abstract Lychee is an exotic tropical fruit with a distinct flavor. The genome of cultivar ‘Feizixiao’ was assembled into 15 pseudochromosomes, totaling ~470 Mb. High heterozygosity (2.27%) resulted in two complete haplotypic assemblies. A total of 13,517 allelic genes (42.4%) were differentially expressed in diverse tissues. Analyses of 72 resequenced lychee accessions revealed two independent domestication events. The extremely early maturing cultivars preferentially aligned to one haplotype were domesticated from a wild population in Yunnan, whereas the late-maturing cultivars that mapped mostly to the second haplotype were domesticated independently from a wild population in Hainan. Early maturing cultivars were probably developed in Guangdong via hybridization between extremely early maturing cultivar and late-maturing cultivar individuals. Variable deletions of a 3.7 kb region encompassed by a pair ofCONSTANS-like genes probably regulate fruit maturation differences among lychee cultivars. These genomic resources provide insights into the natural history of lychee domestication and will accelerate the improvement of lychee and related crops.more » « less
-
Abstract Einkorn wheat (Triticum monococcum) is an ancient grain crop and a close relative of the diploid progenitor (T. urartu) of polyploid wheat. It is the only diploid wheat species having both domesticated and wild forms and therefore provides an excellent system to identify domestication genes and genes for traits of interest to utilize in wheat improvement. Here, we leverage genomic advancements for einkorn wheat using an einkorn reference genome assembly combined with skim-sequencing of a large genetic population of 812 recombinant inbred lines (RILs) developed from a cross between a wild and a domesticatedT. monococcumaccession. We identify 15,919 crossover breakpoints delimited to a median and average interval of 114 Kbp and 219 Kbp, respectively. This high-resolution mapping resource enables us to perform fine-scale mapping of one qualitative (red coleoptile) and one quantitative (spikelet number per spike) trait, resulting in the identification of small physical intervals (400 Kb to 700 Kb) with a limited number of candidate genes. Furthermore, an important domestication locus for brittle rachis is also identified on chromosome 7A. This resource presents an exciting route to perform trait discovery in diploid wheat for agronomically important traits and their further deployment in einkorn as well as tetraploid pasta wheat and hexaploid bread wheat cultivars.more » « less
-
A global meta‐analysis of cover crop response on soil carbon storage within a corn production systemMichael Kaiser (Ed.)By influencing soil organic carbon (SOC), cover crops play a key role in shaping soil health and hence the system's long‐term sustainability. However, the magnitude by which cover crops impacts SOC depends on multiple factors, including soil type, climate, crop rotation, tillage type, cover crop growth, and years under management. To elucidate how these multiple factors influence the relative impact of cover crops on SOC, we conducted a meta‐analysis on the impacts of cover crops within rotations that included corn (Zea maysL.) on SOC accumulation. Information on climatic conditions, soil characteristics, management, and cover crop performance was extracted, resulting in 198 paired comparisons from 61 peer‐reviewed studies. Over the course of each study, cover crops on average increased SOC by 7.3% (95% CI, 4.9%–9.6%). Furthermore, the impact of cover crop–induced increases in percent change SOC was evaluated across soil textures, cover crop types, crop rotations, biomass amounts, cover crop durations, tillage practices, and climatic zones. Our results suggest that current cover crop–based corn production systems are sequestering 5.5 million Mg of SOC per year in the United States and have the potential to sequester 175 million Mg SOC per year globally. These findings can be used to improve carbon footprint calculations and develop science‐based policy recommendations. Taken altogether, cover cropping is a promising strategy to sequester atmospheric C and hence make corn production systems more resilient to changing climates.more » « less
An official website of the United States government

