skip to main content


This content will become publicly available on November 6, 2024

Title: EM-Based Radar Signal Processing and Tracking of Maneuvering Targets
The accuracy of radar tracks depends strongly on the variances of the measurements, and those variances are inversely proportional to the signal-to-noise (SNR) produced the hardware and signal processor. The signal processor uses matched filter processing, and the efficiency of that depends on knowledge of the kinematics of the target. In particular, the matched filter performance depends heavily on range rate and range acceleration. Traditionally, the predicted state of the target from the track filter is used for matched filter processing, but the predicted kinematic state can have rather large errors, and those errors result in match filter loss. This loss can be very large for maneuvering (i.e., accelerating) targets. In this paper, an expected-maximization (EM) approach is taken to jointly address signal processing and tracking. The signal processor maximizes the SNR using the predicted state and produces measurements. The state estimator ( e.g., Kalman filter) uses those measurements to produce expected values of the kinematic state (i.e. the nuisance parameters). The signal processor then maximizes the SNR using the new state estimates. This process continues until the maximum likelihood values of the measurements are achieved. In this paper, the Interacting Multiple Model (IMM) estimator is introduced for the tracking function better address sudden maneuvers. The EM-Based approach to join signal processing and tracking are presented along with a discussion of the real-time computing. Monte Carlo simulation results are given to illustrate a 6 dB improvement in SNR and enhanced tracks for a maneuvering target.  more » « less
Award ID(s):
2008368
NSF-PAR ID:
10470834
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE International Radar Conference 2023
Date Published:
Subject(s) / Keyword(s):
["Signal Processing","Target Tracking","Expectation-Maximization","Sensor Processing","Real-Time Computing"]
Format(s):
Medium: X
Location:
Sydney, Australia
Sponsoring Org:
National Science Foundation
More Like this
  1. Objective: Accurate implementation of real-time non-invasive Brain-Machine / Computer Interfaces (BMI / BCI) requires handling physiological and non-physiological artifacts associated with the measurement modalities. For example, scalp electroencephalographic (EEG) measurements are often considered prone to excessive motion artifacts and other types of artifacts that contaminate the EEG recordings. Although the magnitude of such artifacts heavily depends on the task and the setup, complete minimization or isolation of such artifacts is generally not possible. Approach: We present an adaptive de-noising framework with robustness properties, using a Volterra based non-linear mapping to characterize and handle the motion artifact contamination in EEG measurements. We asked healthy able-bodied subjects to walk on a treadmill at gait speeds of 1-to-4 mph, while we tracked the motion of select EEG electrodes with an infrared video-based motion tracking system. We also placed Inertial Measurement Unit (IMU) sensors on the forehead and feet of the subjects for assessing the overall head movement and segmenting the gait. Main Results: We discuss in detail the characteristics of the motion artifacts and propose a real-time compatible solution to filter them. We report the effective handling of both the fundamental frequency of contamination (synchronized to the walking speed) and its harmonics. Event-Related Spectral Perturbation (ERSP) analysis for walking shows that the gait dependency of artifact contamination is also eliminated on all target frequencies. Significance: The real-time compatibility and generalizability of our adaptive filtering framework allows for the effective use of non-invasive BMI/BCI systems and greatly expands the implementation type and application domains to other types of problems where signal denoising is desirable. Combined with our previous efforts of filtering ocular artifacts, the presented technique allows for a comprehensive adaptive filtering framework to increase the EEG Signal to Noise Ratio (SNR). We believe the implementation will benefit all non-invasive neural measurement modalities, including studies discussing neural correlates of movement and other internal states, not necessarily of BMI focus. 
    more » « less
  2. Abstract: Impairments such as time varying phase noise (PHN) and carrier frequency offset (CFO) result in loss of synchronization and poor performance of multi-relay communication systems. Joint estimation of these impairments is necessary in order to correctly decode the received signal at the destination. In this paper, we address spectrally efficient multi-relay transmission scenarios where all the relays simultaneously communicate with the destination. We propose an iterative pilot-aided algorithm based on the expectation conditional maximization for joint estimation of multipath channels, Wiener PHNs, and CFOs in decode-and-forward-based multi-relay orthogonal frequency division multiplexing systems. Next, a new expression of the hybrid Cramér-Rao lower bound (HCRB) for the multi-parameter estimation problem is derived. Finally, an iterative receiver based on an extended Kalman filter for joint data detection and PHN tracking is employed. Numerical results show that the proposed estimator outperforms existing algorithms and its mean square error performance is close to the derived HCRB at different signal-to-noise ratios for different PHN variances. In addition, the combined estimation algorithm and the iterative receiver can significantly improve average bit-error rate (BER) performance compared with existing algorithms. In addition, the BER performance of the proposed system is close to the ideal case of perfect channel impulse responses, PHNs, and CFOs estimation. 
    more » « less
  3. null (Ed.)
    Abstract Galaxy clusters identified via the Sunyaev-Zel’dovich effect (SZ) are a key ingredient in multi-wavelength cluster cosmology. We present and compare three methods of cluster identification: the standard Matched Filter (MF) method in SZ cluster finding, a Convolutional Neural Networks (CNN), and a ‘combined’ identifier. We apply the methods to simulated millimeter maps for several observing frequencies for a survey similar to SPT-3G, the third-generation camera for the South Pole Telescope. The MF requires image pre-processing to remove point sources and a model for the noise, while the CNN requires very little pre-processing of images. Additionally, the CNN requires tuning of hyperparameters in the model and takes cutout images of the sky as input, identifying the cutout as cluster-containing or not. We compare differences in purity and completeness. The MF signal-to-noise ratio depends on both mass and redshift. Our CNN, trained for a given mass threshold, captures a different set of clusters than the MF, some with SNR below the MF detection threshold. However, the CNN tends to mis-classify cutouts whose clusters are located near the edge of the cutout, which can be mitigated with staggered cutouts. We leverage the complementarity of the two methods, combining the scores from each method for identification. The purity and completeness are both 0.61 for MF, and 0.59 and 0.61 for CNN. The combined method yields 0.60 and 0.77, a significant increase for completeness with a modest decrease in purity. We advocate for combined methods that increase the confidence of many low signal-to-noise clusters. 
    more » « less
  4. The addition of geometric reconfigurability in a cable driven parallel robot (CDPR) introduces kinematic redundancies which can be exploited for manipulating structural and mechanical properties of the robot through redundancy resolution. In the event of a cable failure, a reconfigurable CDPR (rCDPR) can also realign its geometric arrangement to overcome the effects of cable failure and recover the original expected trajectory and complete the trajectory tracking task. In this paper we discuss a fault tolerant control (FTC) framework that relies on an Interactive Multiple Model (IMM) adaptive estimation filter for simultaneous fault detection and diagnosis (FDD) and task recovery. The redundancy resolution scheme for the kinematically redundant CDPR takes into account singularity avoidance, manipulability and wrench quality maximization during trajectory tracking. We further introduce a trajectory tracking methodology that enables the automatic task recovery algorithm to consistently return to the point of failure. This is particularly useful for applications where the planned trajectory is of greater importance than the goal positions, such as painting, welding or 3D printing applications. The proposed control framework is validated in simulation on a planar rCDPR with elastic cables and parameter uncertainties to introduce modeled and unmodeled dynamics in the system as it tracks a complete trajectory despite the occurrence of multiple cable failures. As cables fail one by one, the robot topology changes from an over-constrained to a fully constrained and then an under-constrained CDPR. The framework is applied with a constant-velocity kinematic feedforward controller which has the advantage of generating steady-state inputs despite dynamic oscillations during cable failures, as well as a Linear Quadratic Regulator (LQR) feedback controller to locally dampen these oscillations. 
    more » « less
  5. This paper presents a method of tracking multiple ground targets from an unmanned aerial vehicle (UAV) in a 3D reference frame. The tracking method uses a monocular camera and makes no assumptions on the shape of the terrain or the target motion. The UAV runs two cascaded estimators. The first is an Extended Kalman Filter (EKF), which is responsible for tracking the UAV’s state, such as position and velocity relative to a fixed frame. The second estimator is an EKF that is responsible for estimating a fixed number of landmarks within the camera’s field of view. Landmarks are parameterized by a quaternion associated with bearing from the camera’s optical axis and an inverse distance parameter. The bearing quaternion allows for a minimal representation of each landmark’s direction and distance, a filter with no singularities, and a fast update rate due to few trigonometric functions. Three methods for estimating the ground target positions are demonstrated: the first uses the landmark estimator directly on the targets, the second computes the target depth with a weighted average of converged landmark depths, and the third extends the target’s measured bearing vector to intersect a ground plane approximated from the landmark estimates. Simulation results show that the third target estimation method yields the most accurate results. 
    more » « less