skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Recent Advances and Challenges in Monitoring and Modeling Non-Growing Season Carbon Dioxide Fluxes from the Arctic Boreal Zone
Abstract Purpose of ReviewWhile previously thought to be negligible, carbon emissions during the non-growing season (NGS) can be a substantial part of the annual carbon budget in the Arctic boreal zone (ABZ), which can shift the carbon balance of these ecosystems from a long-held annual carbon sink towards a net annual carbon source. The purpose of this review is to summarize NGS carbon dioxide (CO2) flux research in the ABZ that has been published within the past 5 years. Recent FindingsWe explore the processes and magnitudes of CO2fluxes, and the status of modeling efforts, and evaluate future directions. With technological advances, direct measurements of NGS fluxes are increasing at sites across the ABZ over the past decade, showing ecosystems in the ABZ are a large source of CO2in the shoulder seasons, with low, consistent, winter emissions. SummaryEcosystem carbon cycling models are being improved with some challenges, such as modeling below ground and snow processes, which are critical to understanding NGS CO2fluxes. A lack of representative in situ carbon flux data and gridded environmental data are leading limiting factors preventing more accurate predictions of NGS carbon fluxes.  more » « less
Award ID(s):
2316114 1848620
PAR ID:
10470923
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Current Climate Change Reports
Volume:
9
Issue:
2
ISSN:
2198-6061
Format(s):
Medium: X Size: p. 27-40
Size(s):
p. 27-40
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Accounting for temporal changes in carbon dioxide (CO2) effluxes from freshwaters remains a challenge for global and regional carbon budgets. Here, we synthesize 171 site-months of flux measurements of CO2based on the eddy covariance method from 13 lakes and reservoirs in the Northern Hemisphere, and quantify dynamics at multiple temporal scales. We found pronounced sub-annual variability in CO2flux at all sites. By accounting for diel variation, only 11% of site-months were net daily sinks of CO2. Annual CO2emissions had an average of 25% (range 3%–58%) interannual variation. Similar to studies on streams, nighttime emissions regularly exceeded daytime emissions. Biophysical regulations of CO2flux variability were delineated through mutual information analysis. Sample analysis of CO2fluxes indicate the importance of continuous measurements. Better characterization of short- and long-term variability is necessary to understand and improve detection of temporal changes of CO2fluxes in response to natural and anthropogenic drivers. Our results indicate that existing global lake carbon budgets relying primarily on daytime measurements yield underestimates of net emissions. 
    more » « less
  2. Abstract Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan‐Arctic permafrost maps, an increase in terrestrial measurement sites for CO2and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process‐based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO2sink with lower net CO2uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO2sink was located in western Canada (median: −52 g C m−2 y−1) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m−2 y−1). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH4m−2 y−1). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year‐round CO2and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non‐growing season emissions and disturbance effects. 
    more » « less
  3. Abstract Soil respiration (i.e. from soils and roots) provides one of the largest global fluxes of carbon dioxide (CO2) to the atmosphere and is likely to increase with warming, yet the magnitude of soil respiration from rapidly thawing Arctic-boreal regions is not well understood. To address this knowledge gap, we first compiled a new CO2flux database for permafrost-affected tundra and boreal ecosystems in Alaska and Northwest Canada. We then used the CO2database, multi-sensor satellite imagery, and random forest models to assess the regional magnitude of soil respiration. The flux database includes a new Soil Respiration Station network of chamber-based fluxes, and fluxes from eddy covariance towers. Our site-level data, spanning September 2016 to August 2017, revealed that the largest soil respiration emissions occurred during the summer (June–August) and that summer fluxes were higher in boreal sites (1.87 ± 0.67 g CO2–C m−2d−1) relative to tundra (0.94 ± 0.4 g CO2–C m−2d−1). We also observed considerable emissions (boreal: 0.24 ± 0.2 g CO2–C m−2d−1; tundra: 0.18 ± 0.16 g CO2–C m−2d−1) from soils during the winter (November–March) despite frozen surface conditions. Our model estimates indicated an annual region-wide loss from soil respiration of 591 ± 120 Tg CO2–C during the 2016–2017 period. Summer months contributed to 58% of the regional soil respiration, winter months contributed to 15%, and the shoulder months contributed to 27%. In total, soil respiration offset 54% of annual gross primary productivity (GPP) across the study domain. We also found that in tundra environments, transitional tundra/boreal ecotones, and in landscapes recently affected by fire, soil respiration often exceeded GPP, resulting in a net annual source of CO2to the atmosphere. As this region continues to warm, soil respiration may increasingly offset GPP, further amplifying global climate change. 
    more » « less
  4. Abstract Collectively, reservoirs constitute a significant global source of C‐based greenhouse gases (GHGs). Yet, global estimates of reservoir carbon dioxide (CO2) and methane (CH4) emissions remain uncertain, varying more than four‐fold in recent analyses. Here we present results from a global application of the Greenhouse Gas from Reservoirs (G‐res) model wherein we estimate per‐area and per‐reservoir CO2and CH4fluxes, by specific flux pathway and in a spatially and temporally explicit manner, as a function of reservoir characteristics. We show: (a) CH4fluxes via degassing and ebullition are much larger than previously recognized and diffusive CH4fluxes are lower than previously estimated, while CO2emissions are similar to those reported in past work; (b) per‐area reservoir GHG fluxes are >29% higher than suggested by previous studies, due in large part to our novel inclusion of the degassing flux in our global estimate; (c) CO2flux is the dominant emissions pathway in boreal regions and CH4degassing and ebullition are dominant in tropical and subtropical regions, with the highest overall reservoir GHG fluxes in the tropics and subtropics; and (d) reservoir GHG fluxes are quite sensitive to input parameters that are both poorly constrained and likely to be strongly influenced by climate change in coming decades (parameters such as temperature and littoral area, where the latter may be expanded by deepening thermoclines expected to accompany warming surface waters). Together these results highlight a critical need to both better understand climate‐related drivers of GHG emission and to better quantify GHG emissions via CH4ebullition and degassing. 
    more » « less
  5. Abstract Cold seasons in Arctic ecosystems are increasingly important to the annual carbon balance of these vulnerable ecosystems. Arctic winters are largely harsh and inaccessible leading historic data gaps during that time. Until recently, cold seasons have been assumed to have negligible impacts on the annual carbon balance but as data coverage increases and the Arctic warms, the cold season has been shown to account for over half of annual methane (CH4) emissions and can offset summer photosynthetic carbon dioxide (CO2) uptake. Freeze–thaw cycle dynamics play a critical role in controlling cold season CO2and CH4loss, but the relationship has not been extensively studied. Here, we analyze freeze–thaw processes through in situ CO2and CH4fluxes in conjunction with soil cores for physical structure and porewater samples for redox biogeochemistry. We find a movement of water toward freezing fronts in soil cores, leaving air spaces in soils, which allows for rapid infiltration of oxygen‐rich snow melt in spring as shown by oxidized iron in porewater. The snow melt period coincides with rising ecosystem respiration and can offset up to 41% of the summer CO2uptake. Our study highlights this important seasonal process and shows spring greenhouse gas emissions are largely due to production from respiration instead of only bursts of stored gases. Further warming is projected to result in increases of snowpack and deeper thaws, which could increase this ecosystem respiration dominate snow melt period causing larger greenhouse gas losses during spring. 
    more » « less