skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2316114

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Purpose of ReviewWhile previously thought to be negligible, carbon emissions during the non-growing season (NGS) can be a substantial part of the annual carbon budget in the Arctic boreal zone (ABZ), which can shift the carbon balance of these ecosystems from a long-held annual carbon sink towards a net annual carbon source. The purpose of this review is to summarize NGS carbon dioxide (CO2) flux research in the ABZ that has been published within the past 5 years. Recent FindingsWe explore the processes and magnitudes of CO2fluxes, and the status of modeling efforts, and evaluate future directions. With technological advances, direct measurements of NGS fluxes are increasing at sites across the ABZ over the past decade, showing ecosystems in the ABZ are a large source of CO2in the shoulder seasons, with low, consistent, winter emissions. SummaryEcosystem carbon cycling models are being improved with some challenges, such as modeling below ground and snow processes, which are critical to understanding NGS CO2fluxes. A lack of representative in situ carbon flux data and gridded environmental data are leading limiting factors preventing more accurate predictions of NGS carbon fluxes. 
    more » « less
  2. Abstract Ecosystems at high latitudes are changing rapidly in response to climate change. To understand changes in carbon fluxes across seasonal to multi‐decadal timescales, long‐term in situ measurements from eddy covariance networks are needed. However, there are large spatiotemporal gaps in the high‐latitude eddy covariance network. Here we used the relative extrapolation error index in machine learning‐based upscaled gross primary production as a measure of network representativeness and as the basis for a network optimization. We show that the relative extrapolation error index has steadily decreased from 2001 to 2020, suggesting diminishing upscaling errors. In experiments where we limit site activity by either setting a maximum duration or by ending measurements at a fixed time those errors increase significantly, in some cases setting the network status back more than a decade. Our experiments also show that with equal site activity across different theoretical network setups, a more spread out design with shorter‐term measurements functions better in terms of larger‐scale representativeness than a network with fewer long‐term towers. We developed a method to select optimized site additions for a network extension, which blends an objective modeling approach with expert knowledge. This method greatly outperforms an unguided network extension and can compensate for suboptimal human choices. For the Canadian Arctic we show several optimization scenarios and find that especially the Canadian high Arctic and north east tundra benefit greatly from addition sites. Overall, it is important to keep sites active and where possible make the extra investment to survey new strategic locations. 
    more » « less