Abstract In around 1990, significant shifts occurred in the spatial pattern and temporal evolution of the El Niño‐Southern Oscillation (ENSO), with these shifts showing asymmetry between El Niño and La Niña phases. El Niño transitioned from the Eastern Pacific (EP) to the Central Pacific (CP) type, while La Niña's multi‐year (MY) events increased. These changes correlated with shifts in ENSO dynamics. Before 1990, El Niño was influenced by the Tropical Pacific (TP) ENSO dynamic, shifting to the Subtropical Pacific (SP) ENSO dynamic afterward, altering its spatial pattern. La Niña was influenced by the SP ENSO dynamic both before and after 1990 and has maintained the CP type. The strengthened SP ENSO dynamic since 1990, accompanied by enhanced precipitation efficiency during La Niña, make it easier for La Niña to transition into MY events. In contrast, there is no observed increase in precipitation efficiency during El Niño.
more »
« less
The Potential Influence of Maritime Continent Deforestation on El Niño‐Southern Oscillation: Insights From Idealized Modeling Experiments
Abstract During the past two decades, the Maritime Continent (MC) has experienced increased deforestation. Here we show, with ensemble idealized deforestation experiments, that the MC deforestation could potentially alter the complexity (i.e., event‐to‐event differences) of the El Niño‐Southern Oscillation (ENSO) in terms of its spatial pattern and temporal evolution. The deforestation model run increases the occurrences of the Central Pacific and multi‐year types of ENSO compared to the control experiments. This change in ENSO complexity can be attributed to MC's intensification of the subtropical ENSO dynamics, commonly known as the seasonal footprinting mechanism. The deforestation amplifies the mean state of the subtropical high over the northeastern Pacific, leading to an increased dominance of subtropical ENSO dynamics in determining the ENSO pattern and evolution. This idealized coupled climate modeling study suggests that MC deforestation has a potential to alter ENSO's complexity, making El Niño more complex and less predictable.
more »
« less
- Award ID(s):
- 2109539
- PAR ID:
- 10470943
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 20
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study explores the key differences between single-year (SY) and multiyear (MY) El Niño properties and examines their relative importance in causing the diverse evolution of El Niño. Using a CESM1 simulation, observation/reanalysis data, and pacemaker coupled model experiments, the study suggests that the Indian Ocean plays a crucial role in distinguishing between the two types of El Niño evolution through subtropical ENSO dynamics. These dynamics can produce MY El Niño events if the climatological northeasterly trade winds are weakened or even reversed over the subtropical Pacific when El Niño peaks. However, El Niño and the positive Indian Ocean dipole (IOD) it typically induces both strengthen the climatological northeasterly trades, preventing the subtropical Pacific dynamics from producing MY events. MY events can occur if the El Niño fails to induce a positive IOD, which is more likely when the El Niño is weak or of the central Pacific type. Additionally, this study finds that such a weak correlation between El Niño and the IOD occurs during decades when the Atlantic multidecadal oscillation (AMO) is in its positive phase. Statistical analyses and pacemaker coupled model experiments confirm that the positive AMO phase increases the likelihood of these conditions, resulting in a higher frequency of MY El Niño events.more » « less
-
Abstract Using hindcasts produced by a coupled climate model, this study evaluates whether the model can forecast the observed spatiotemporal complexity in the El Niño−Southern Oscillation (ENSO) during the period 1982−2011: the eastern Pacific (EP), central Pacific‐I (CP‐I) and ‐II (CP‐II) types of El Niño, and the multi‐year evolution events of El Niño occurred in 1986–1988 (i.e., 1986/87/88 El Niño) and La Niña occurred in 1998–2000 (i.e., 1998/99/00 La Niña). With regard to the spatial complexity, it is found that the CP‐I type of El Niño is the easiest to hindcast, the CP‐II is second, and the EP is most difficult to hindcast as its amplitude is significantly underestimated in the model used here. The model deficiency in hindcasting the EP El Niño is related to a warm bias in climatological sea surface temperatures (SSTs) in the tropical eastern Pacific. This warm bias is related to model biases in the strengths of the Pacific Walker circulation and South Pacific high, both of which are notably weaker than observed. As for the temporal complexity, the model successfully hindcasts the multi‐year evolution of the 1998/99/00 La Niña but fails to accurately hindcast the 1986/87/88 El Niño. This contrasting model performance in hindcasting multi‐year events is found to be related to a cold bias in climatological SSTs in the tropical central Pacific. This cold bias result enables the model La Niña, but not El Niño, to activate intrabasin tropical‒subtropical interactions associated with the Pacific Meridional Mode that produce the multi‐year evolution pattern.more » « less
-
Abstract The intricate currents of the Northwest Pacific Ocean, with strong manifestations along the westside rim, connect tropical and subtropical gyres and significantly influence East Asian and global climates. The El Niño/Southern Oscillation (ENSO) originates in the tropical Pacific Ocean and disrupts this ocean circulation system. However, the spatiotemporal dependence of the impact of ENSO events has yet to be elucidated because of the complexities of both ENSO events and circulation systems, as well as the increased availability of observational data. We thus combined altimeter and drifter observations to demonstrate the distinct tropical and subtropical influences of the circulation system on ENSO diversity. During El Niño years, the North Equatorial Current, North Equatorial Countercurrent, Mindanao Current, Indonesian Throughflow, and the subtropical Kuroshio Current and its Extension region exhibit strengthening, while the tropical Kuroshio Current weakens. The tropical impact is characterized by sea level changes in the warm pool, whereas the subtropical influence is driven by variations in the wind stress curl. The tropical and subtropical influences are amplified during the Centra Pacific El Niño years compared to the Eastern Pacific El Niño years. As the globe warms, these impacts are anticipated to intensify. Thus, strengthening observation systems and refining climate models are essential for understanding and projecting the enhancing influences of ENSO on the Northwest Pacific Oceanic circulation.more » « less
-
Abstract To better understand the diverse temporal evolutions of observed El Niño‒Southern Oscillation (ENSO) events, which are characterized as single- or multi-year, this study examines similar events in a 2200-year-long integration of Community Earth System Model, version 1. Results show that selective activation of inter- and intra-basin climate interactions (together, pantropical climate interactions) controls ENSO’s evolution pattern. When ENSO preferentially activates inter-basin interactions with tropical Indian and/or Atlantic Oceans, it introduces negative feedbacks into the ENSO phase, resulting in single-year evolution. When ENSO preferentially activates intra-basin interactions with subtropical North Pacific, it causes positive feedbacks, producing multi-year evolution. Three key factors (developing-season intensity, pre-onset Pacific condition, and maximum zonal location) and their thresholds, which determine whether inter- or intra-basin interactions are activated and whether an event will become a single- or multi-year event, are identified. These findings offer a way to predict ENSO’s evolution pattern by incorporating the controlling role of pantropical climate interactions.more » « less
An official website of the United States government
