skip to main content


Title: Single- and multi-year ENSO events controlled by pantropical climate interactions
Abstract

To better understand the diverse temporal evolutions of observed El Niño‒Southern Oscillation (ENSO) events, which are characterized as single- or multi-year, this study examines similar events in a 2200-year-long integration of Community Earth System Model, version 1. Results show that selective activation of inter- and intra-basin climate interactions (together, pantropical climate interactions) controls ENSO’s evolution pattern. When ENSO preferentially activates inter-basin interactions with tropical Indian and/or Atlantic Oceans, it introduces negative feedbacks into the ENSO phase, resulting in single-year evolution. When ENSO preferentially activates intra-basin interactions with subtropical North Pacific, it causes positive feedbacks, producing multi-year evolution. Three key factors (developing-season intensity, pre-onset Pacific condition, and maximum zonal location) and their thresholds, which determine whether inter- or intra-basin interactions are activated and whether an event will become a single- or multi-year event, are identified. These findings offer a way to predict ENSO’s evolution pattern by incorporating the controlling role of pantropical climate interactions.

 
more » « less
Award ID(s):
1833075 2109539
NSF-PAR ID:
10380080
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Climate and Atmospheric Science
Volume:
5
Issue:
1
ISSN:
2397-3722
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Using hindcasts produced by a coupled climate model, this study evaluates whether the model can forecast the observed spatiotemporal complexity in the El Niño−Southern Oscillation (ENSO) during the period 1982−2011: the eastern Pacific (EP), central Pacific‐I (CP‐I) and ‐II (CP‐II) types of El Niño, and the multi‐year evolution events of El Niño occurred in 1986–1988 (i.e., 1986/87/88 El Niño) and La Niña occurred in 1998–2000 (i.e., 1998/99/00 La Niña). With regard to the spatial complexity, it is found that the CP‐I type of El Niño is the easiest to hindcast, the CP‐II is second, and the EP is most difficult to hindcast as its amplitude is significantly underestimated in the model used here. The model deficiency in hindcasting the EP El Niño is related to a warm bias in climatological sea surface temperatures (SSTs) in the tropical eastern Pacific. This warm bias is related to model biases in the strengths of the Pacific Walker circulation and South Pacific high, both of which are notably weaker than observed. As for the temporal complexity, the model successfully hindcasts the multi‐year evolution of the 1998/99/00 La Niña but fails to accurately hindcast the 1986/87/88 El Niño. This contrasting model performance in hindcasting multi‐year events is found to be related to a cold bias in climatological SSTs in the tropical central Pacific. This cold bias result enables the model La Niña, but not El Niño, to activate intrabasin tropical‒subtropical interactions associated with the Pacific Meridional Mode that produce the multi‐year evolution pattern.

     
    more » « less
  2. Abstract

    A cyclostationary linear inverse model (CSLIM) is used to investigate the seasonal growth of tropical Pacific Ocean El Niño–Southern Oscillation (ENSO) events with canonical, central Pacific (CP), or eastern Pacific (EP) sea surface temperature (SST) characteristics. Analysis shows that all types of ENSO events experience maximum growth toward final states occurring in November and December. ENSO events with EP characteristics also experience growth into May and June, but CP events do not. A single dominant “ENSO mode,” growing from an equatorial heat content anomaly into a characteristic ENSO-type SST pattern in about 9 months (consistent with the delayed/recharge oscillator model of ENSO), is essential for the predictable development of all ENSO events. Notably, its seasonality is responsible for the late-calendar-year maximum in ENSO amplification. However, this ENSO mode alone does not capture the observed growth and evolution of diverse ENSO events, which additionally involve the seasonal evolution of other nonorthogonal Floquet modes. EP event growth occurs when the ENSO mode is initially “covered up” in combination with other Floquet modes. The ENSO mode’s slow seasonal evolution allows it to emerge while the other modes rapidly evolve and/or decay, leading to strongly amplifying and more predictable EP events. CP events develop when the initial state has a substantial contribution from Floquet modes with meridional mode–like SST structures. Thus, while nearly all ENSO events involve the seasonally varying ENSO-mode dynamics, the diversity and predictability of ENSO events cannot be understood without identifying contributions from the remaining Floquet modes.

    Significance Statement

    The purpose of this study is to identify structures that lead to seasonal growth of diverse types of El Niño–Southern Oscillation (ENSO) events. An important contribution from this study is that it uses an observationally constrained, empirically derived seasonal model. We find that processes affecting the evolution of diverse ENSO events are strongly seasonally dependent. ENSO events with eastern equatorial Pacific sea surface temperature (SST) characteristics are closely related to a single “ENSO mode” that resembles theoretical models of ENSO variability. ENSO events that have central equatorial Pacific SST characteristics include contributions from additional “meridional mode” structures that evolve via different physical processes. These findings are an important step in evaluating the seasonal predictability of ENSO diversity.

     
    more » « less
  3. Abstract

    Synchronous pulses of seed masting and natural disturbance have positive feedbacks on the reproduction of masting species in disturbance‐prone ecosystems. We test the hypotheses that disturbances and proximate causes of masting are correlated, and that their large‐scale synchrony is driven by similar climate teleconnection patterns at both inter‐annual and decadal time scales.

    Hypotheses were tested on white spruce (Picea glauca), a masting species which surprisingly persists in fire‐prone boreal forests while lacking clear fire adaptations. We built masting, drought and fire indices at regional (Alaska, Yukon, Alberta, Quebec) and sub‐continental scales (western North America) spanning the second half of the 20th century. Superposed Epoch Analysis tested the temporal associations between masting events, drought and burnt area at the regional scale. At the sub‐continental scale, Superposed Epoch Analysis tested whether El Niño‐Southern Oscillation (ENSO) and its coupled effects with the Atlantic Multidecadal Oscillation (AMO) in the positive phase (AMO+/ENSO+) synchronize drought, burnt area and masting. We additionally tested the consistency of our synchronization hypotheses on a decadal temporal scale to verify whether long‐term oscillations in AMO+/ENSO+ are coherent to decadal variation in drought, burnt area and masting.

    Analyses demonstrated synchronicity between drought, fire and masting. In all regions the year before a mast event was drier and more fire‐prone than usual. During AMO+/ENSO+ events sub‐continental indices of drought and burnt area experienced significant departures from mean values. The same was observed for large‐scale masting in the subsequent year, confirming 1‐year lag between fire and masting. Sub‐continental indices of burnt area and masting showed in‐phase decadal fluctuations led by the AMO+/ENSO+. Results support the ‘Environmental prediction hypothesis’ for mast seeding.

    Synthesis. We provide evidence of large‐scale synchronicity between seed masting inPicea glaucaand fire regimes in boreal forests of western North America at both inter‐annual and decadal time scales. We conclude that seed production in white spruce predicts changes in disturbance regimes by sharing the same large‐scale climate drivers with drought and fire. This gives new insides in a mechanism providing a fire‐sensitive species with higher than expected adaptability to changes in climate.

     
    more » « less
  4. Abstract

    The El Niño Southern Oscillation (ENSO) is highly dependent on coupled atmosphere-ocean interactions and feedbacks, suggesting a tight relationship between ENSO strength and background climate conditions. However, the extent to which background climate state determines ENSO behavior remains in question. Here we present reconstructions of total variability and El Niño amplitude from individual foraminifera distributions at discrete time intervals over the past ~285,000 years across varying atmospheric CO2levels, global ice volume and sea level, and orbital insolation forcing. Our results show a strong correlation between eastern tropical Pacific Ocean mixed-layer thickness and both El Niño amplitude and central Pacific variability. This ENSO-thermocline relationship implicates upwelling feedbacks as the major factor controlling ENSO strength on millennial time scales. The primacy of the upwelling feedback in shaping ENSO behavior across many different background states suggests accurate quantification and modeling of this feedback is essential for predicting ENSO’s behavior under future climate conditions.

     
    more » « less
  5. Abstract This study examines historical simulations of ENSO in the E3SM-1-0, CESM2, and GFDL-CM4 climate models, provided by three leading U.S. modeling centers as part of the Coupled Model Intercomparison Project phase 6 (CMIP6). These new models have made substantial progress in simulating ENSO’s key features, including: amplitude; timescale; spatial patterns; phase-locking; spring persistence barrier; and recharge oscillator dynamics. However, some important features of ENSO are still a challenge to simulate. In the central and eastern equatorial Pacific, the models’ weaker-than-observed subsurface zonal current anomalies and zonal temperature gradient anomalies serve to weaken the nonlinear zonal advection of subsurface temperatures, leading to insufficient warm/cold asymmetry of ENSO’s sea surface temperature anomalies (SSTA). In the western equatorial Pacific, the models’ excessive simulated zonal SST gradients amplify their zonal temperature advection, causing their SSTA to extend farther west than observed. The models underestimate both ENSO’s positive dynamic feedbacks (due to insufficient zonal wind stress responses to SSTA) and its thermodynamic damping (due to insufficient convective cloud shading of eastern Pacific SSTA during warm events); compensation between these biases leads to realistic linear growth rates for ENSO, but for somewhat unrealistic reasons. The models also exhibit stronger-than-observed feedbacks onto eastern equatorial Pacific SSTAs from thermocline depth anomalies, which accelerates the transitions between events and shortens the simulated ENSO period relative to observations. Implications for diagnosing and simulating ENSO in climate models are discussed. 
    more » « less