skip to main content


Title: Lidar Observations of Predawn Thermosphere‐Ionosphere Na (TINa) Layers Over Boulder (40.13°N, 105.24°W): Annual Phase Variations and Correlation With Sunrise and Tidal Winds
Abstract

We have discovered that the peak phase time of predawn thermosphere‐ionosphere Na (TINa) layers (∼110–150 km altitude) undergoes clear annual variations with the earliest occurrence in summer and latest in winter over Boulder (40.13°N, 105.24°W), which are closely correlated to annual phase variations of sunrise and tidal winds. Such discoveries were enabled by the first characterization of 12 monthly composites of TINa layers from January through December using 7 years of lidar observations (2011–2017). Despite their tenuous densities, the predawn TINa layers have nearly 100% occurrence rate (160 out of 164 nights of observations). Monthly composites show downward‐phase‐progression TINa descending at similar phase speeds as Climatological Tidal Model of the Thermosphere tidal winds. These TINa layers occur in ion convergence but neutral divergence regions, modeled using tidal winds. These results support the formation mechanism (neutralization of converged TINa+forming TINa) proposed previously and suggest that migrating tidal winds experience annual phase variations.

 
more » « less
NSF-PAR ID:
10470947
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
18
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report the first lidar observations of regular occurrence of mid‐latitude thermosphere‐ionosphere Na (TINa) layers over Boulder (40.13°N, 105.24°W), Colorado. Detection of tenuous Na layers (∼0.1–1 cm−3from 150 to 130 km) was enabled by high‐sensitivity Na Doppler lidar. TINa layers occur regularly in various months and years, descending from ∼125 km after dusk and from ∼150 km before dawn. The downward‐progression phase speeds are ∼3 m/s above 120 km and ∼1 m/s below 115 km, consistent with semidiurnal tidal phase speeds. One or more layers sometimes occur across local midnight. Elevated volume mixing ratios above the turning point (∼105–110 km) of Na density slope suggest in situ production of the dawn/dusk layers via neutralization of converged Na+layers. Vertical drift velocity of TINa+calculated with the Ionospheric Connection Explorer Hough Mode Extension tidal winds shows convergent ion flow phases aligned well with TINa, supporting this formation hypothesis.

     
    more » « less
  2. Abstract

    We investigate the high‐latitude mesospheric and lower thermospheric winds during the 2013 sudden stratospheric warming event using ground‐based optical Doppler remote sensing observations of the OH and O (557.7 nm) emission from Eureka (80°N, 86°W) and Thermosphere Ionosphere Mesosphere Electrodynamics‐General Circulation Model (TIME‐GCM) simulations. Simulations with and without lunar tidal forcing of the TIME‐GCM were performed. It has been found that the additional lunar tidal forcing only impacts slightly the semidiurnal tidal amplitude and phase at Eureka. The TIME‐GCM simulations still have noticeable discrepancies in the mean winds and the semidiurnal tidal amplitude and phase compared to the observations. The semidiurnal tidal phase shift during the stratospheric warming event may be associated with the sudden stratospheric warming related zonal mean wind reversal, which is similar to the seasonal change in the zonal mean wind from winter to summer. Accordingly, during the reversal, more modes of the semidiurnal tide propagate to the mesosphere, changing the phase of the semidiurnal tide.

     
    more » « less
  3. Abstract

    Ionospheric day‐to‐day variability is ubiquitous, even under undisturbed geomagnetic and solar conditions. In this paper, quiet‐time day‐to‐day variability of equatorial vertical E × B drift is investigated using observations from ROCSAT‐1 satellite and the Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (WACCM‐X) v2.1 simulations. Both observations and model simulations illustrate that the day‐to‐day variability reaches the maximum at dawn, and the variability of dawn drift is largest around June solstice at ~90–180°W. However, there are significant challenges to reproduce the observed magnitude of the variability and the longitude distributions at other seasons. Using a standalone electro‐dynamo model, we find that the day‐to‐day variability of neutral winds in the E‐region (≤~130 km) is the primary driver of the day‐to‐day variability of dawn drift. Ionospheric conductivity modulates the drift variability responses to the E‐region wind variability, thereby determining its strength as well as its seasonal and longitudinal variations. Further, the day‐to‐day variability of dawn drift induced by individual tidal components of winds in June are examined: DW1, SW2, D0, and SW1 are the most important contributors.

     
    more » « less
  4. Abstract

    The Madden‐Julian Oscillation (MJO), an eastward‐moving disturbance near the equator (±30°) that typically recurs every ∼30–90 days in tropical winds and clouds, is the dominant mode of intraseasonal variability in tropical convection and circulation and has been extensively studied due to its importance for medium‐range weather forecasting. A previous statistical diagnostic of SABER/TIMED observations and the MJO index showed that the migrating diurnal (DW1) and the important nonmigrating diurnal (DE3) tide modulates on MJO‐timescale in the mesosphere/lower thermosphere (MLT) by about 20%–30%, depending on the MJO phase. In this study, we address the physics of the underlying coupling mechanisms using SABER, MERRA‐2 reanalysis, and SD‐WACCMX. Our emphasis was on the 2008–2010 time period when several strong MJO events occurred. SD‐WACCMX and SABER tides show characteristically similar MJO‐signal in the MLT region. The tides largely respond to the MJO in the tropospheric tidal forcing and less so to the MJO in tropospheric/stratospheric background winds. We further quantify the MJO response in the MLT region in the SD‐WACCMX zonal and meridional momentum forcing by separating the relative contributions of classical (Coriolis force and pressure gradient) and nonclassical forcing (advection and gravity wave drag [GWD]) which transport the MJO‐signal into the upper atmosphere. Interestingly, the tidal MJO‐response is larger in summer due to larger momentum forcing in the MLT region despite the MJO being most active in winter. We find that tidal advection and GWD forcing in MLT can work together or against each other depending on their phase relationship to the MJO‐phases.

     
    more » « less
  5. Abstract

    We employ in this work the firstO(1D) 630.0‐nmairglow data set registered at the Remote Optical Facility (ROF) in Culebra, Puerto Rico, during the descending phase of the solar cycle #24. From 4 November 2015 to 26 September 2019, observations were carried out during 633 nights at ROF using a small all‐sky imager, while MSTID events were identified in 225 of 499 nights classified as clear. A quantitative analysis of these MSTIDs and their dependency by geophysical parameters (solar and geomagnetic activities) are the main focus of this study. We introduce an original statistical methodology that examines the unique features of the data set and minimizes the cross contamination of individual modulators onto one another, avoiding bias in the results. Our findings include a primary peak of MSTIDs occurrence in the December solstice and a secondary peak in the June solstice. We observed a remarkable correlation in the occurrence rate of the MSTIDs with the geomagnetic activity. A notable modulation of the MSTIDs occurrence rate with the solar activity is also found, which includes periods of correlation and anticorrelation depending on the season. This modulation has an annual component that is ~33% and ~83% stronger than the semiannual and terannual components, respectively. We discuss these findings based on a previous study of the thermospheric neutral winds derived from 30 years of Fabry‐Perot interferometer observations at Arecibo Observatory. Our results, which are valid for low to moderate solar activity, point out circumstances that might explain differences in previous climatological studies of nighttime MSTIDs.

     
    more » « less