We report the first lidar observations of regular occurrence of mid‐latitude thermosphere‐ionosphere Na (TINa) layers over Boulder (40.13°N, 105.24°W), Colorado. Detection of tenuous Na layers (∼0.1–1 cm−3from 150 to 130 km) was enabled by high‐sensitivity Na Doppler lidar. TINa layers occur regularly in various months and years, descending from ∼125 km after dusk and from ∼150 km before dawn. The downward‐progression phase speeds are ∼3 m/s above 120 km and ∼1 m/s below 115 km, consistent with semidiurnal tidal phase speeds. One or more layers sometimes occur across local midnight. Elevated volume mixing ratios above the turning point (∼105–110 km) of Na density slope suggest in situ production of the dawn/dusk layers via neutralization of converged Na+layers. Vertical drift velocity of TINa+calculated with the Ionospheric Connection Explorer Hough Mode Extension tidal winds shows convergent ion flow phases aligned well with TINa, supporting this formation hypothesis.
We have discovered that the peak phase time of predawn thermosphere‐ionosphere Na (TINa) layers (∼110–150 km altitude) undergoes clear annual variations with the earliest occurrence in summer and latest in winter over Boulder (40.13°N, 105.24°W), which are closely correlated to annual phase variations of sunrise and tidal winds. Such discoveries were enabled by the first characterization of 12 monthly composites of TINa layers from January through December using 7 years of lidar observations (2011–2017). Despite their tenuous densities, the predawn TINa layers have nearly 100% occurrence rate (160 out of 164 nights of observations). Monthly composites show downward‐phase‐progression TINa descending at similar phase speeds as Climatological Tidal Model of the Thermosphere tidal winds. These TINa layers occur in ion convergence but neutral divergence regions, modeled using tidal winds. These results support the formation mechanism (neutralization of converged TINa+forming TINa) proposed previously and suggest that migrating tidal winds experience annual phase variations.
more » « less- NSF-PAR ID:
- 10470947
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 18
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract We investigate the high‐latitude mesospheric and lower thermospheric winds during the 2013 sudden stratospheric warming event using ground‐based optical Doppler remote sensing observations of the OH and O (557.7 nm) emission from Eureka (80°N, 86°W) and Thermosphere Ionosphere Mesosphere Electrodynamics‐General Circulation Model (TIME‐GCM) simulations. Simulations with and without lunar tidal forcing of the TIME‐GCM were performed. It has been found that the additional lunar tidal forcing only impacts slightly the semidiurnal tidal amplitude and phase at Eureka. The TIME‐GCM simulations still have noticeable discrepancies in the mean winds and the semidiurnal tidal amplitude and phase compared to the observations. The semidiurnal tidal phase shift during the stratospheric warming event may be associated with the sudden stratospheric warming related zonal mean wind reversal, which is similar to the seasonal change in the zonal mean wind from winter to summer. Accordingly, during the reversal, more modes of the semidiurnal tide propagate to the mesosphere, changing the phase of the semidiurnal tide.
-
Abstract In this paper, we simulate an observed mountain wave event over central Europe and investigate the subsequent generation, propagation, phase speeds and spatial scales, and momentum deposition of secondary waves under three different tidal wind conditions. We find the mountain wave breaks just below the lowest critical level in the mesosphere. As the mountain wave breaks, it extends outwards along the phases and fluid associated with the breaking flows downstream of its original location by 500–1,000 km. The breaking generates a broad range of secondary waves with horizontal scales ranging from the mountain wave instability scales (20–300 km), to multiples of the mountain wave packet scale (420 km+) and phase speeds from 40 to 150 m/s in the lower thermosphere. The secondary wave morphology consists of semi‐concentric patterns with wave propagation generally opposing the local tidal winds in the mesosphere. Shears in the tidal winds cause breaking of the secondary waves and local wave forcing which generates even more secondary waves. The tidal winds also influence the dominant wavelengths and phase speeds of secondary waves that reach the thermosphere. The secondary waves that reach the thermosphere deposit their energy and momentum over a broad area of the thermosphere, mostly eastward of the source and concentrated between 110 and 130 km altitude. The secondary wave forcing is significant and will likely be very important for the dynamics of the thermosphere. A large portion of this forcing comes from nonlinearly generated secondary waves at relatively small‐scales which arise from the wave breaking processes.
-
Abstract The mesosphere and lower thermosphere (MLT) plays a critical role in linking the middle and upper atmosphere. However, many General Circulation Models do not model the MLT and those that do remain poorly constrained. We use long‐term meteor radar observations (2005–2021) from Rothera (67°S, 68°W) on the Antarctic Peninsula to evaluate the Whole Atmosphere Community Climate Model with thermosphere‐ionosphere eXtension (WACCM‐X) and investigate interannual variability. We find some significant differences between WACCM‐X and observations. In particular, at upper heights, observations reveal eastwards wintertime (April–September) winds, whereas the model predicts westwards winds. In summer (October–March), the observed winds are northwards but predictions are southwards. Both the model and observations reveal significant interannual variability. We characterize the trend and the correlation between the winds and key phenomena: (a) the 11‐year solar cycle, (b) El Niño Southern Oscillation, (c) Quasi‐Biennial Oscillation and (d) Southern Annular Mode using a linear regression method. Observations of the zonal wind show significant changes with time. The summertime westwards wind near 80 km is weakening by up to 4–5 ms−1per decade, whilst the eastward wintertime winds around 85–95 km are strengthening at by around 7 ms−1per decade. We find that at some times of year there are significant correlations between the phenomena and the observed/modeled winds. The significance of this work lies in quantifying the biases in a leading General Circulation Model and demonstrating notable interannual variability in both modeled and observed winds.
-
Growing evidence indicates that a selected group of global-scale waves from the lower atmosphere constitute a significant source of ionosphere-thermosphere (IT, 100–600 km) variability. Due to the geometry of the magnetic field lines, this IT coupling occurs mainly at low latitudes (
30°) and is driven by waves originating in the tropical troposphere such as the diurnal eastward propagating tide with zonal wave number s = −3 (DE3) and the quasi-3-day ultra-fast Kelvin wave with s = −1 (UFKW1). In this work, over 2 years of simultaneous in situ ion densities from Ion Velocity Meters (IVMs) onboard the Ionospheric Connection Explorer (ICON) near 590 km and the Scintillation Observations and Response of the Ionosphere to Electrodynamics (SORTIE) CubeSat near 420 km, along with remotely-sensed lower (ca. 105 km) and middle (ca. 220 km) thermospheric horizontal winds from ICON’s Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) are employed to demonstrate a rich spectrum of waves coupling these IT regions. Strong DE3 and UFKW1 topside ionospheric variations are traced to lower thermospheric zonal winds, while large diurnal s = 2 (DW2) and zonally symmetric (D0) variations are traced to middle thermospheric winds generatedin situ . Analyses of diurnal tides from the Climatological Tidal Model of the Thermosphere (CTMT) reveal general agreement near 105 km, with larger discrepancies near 220 km due toin situ tidal generation not captured by CTMT. This study highlights the utility of simultaneous satellite measurements for studies of IT coupling via global-scale waves.