skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predation-resistant Pseudomonas bacteria engage in symbiont-like behavior with the social amoeba Dictyostelium discoideum
Abstract The soil amoeba Dictyostelium discoideum acts as both a predator and potential host for diverse bacteria. We tested fifteen Pseudomonas strains that were isolated from transiently infected wild D. discoideum for ability to escape predation and infect D. discoideum fruiting bodies. Three predation-resistant strains frequently caused extracellular infections of fruiting bodies but were not found within spores. Furthermore, infection by one of these species induces secondary infections and suppresses predation of otherwise edible bacteria. Another strain can persist inside of amoebae after being phagocytosed but is rarely taken up. We sequenced isolate genomes and discovered that predation-resistant isolates are not monophyletic. Many Pseudomonas isolates encode secretion systems and toxins known to improve resistance to phagocytosis in other species, as well as diverse secondary metabolite biosynthetic gene clusters that may contribute to predation resistance. However, the distribution of these genes alone cannot explain why some strains are edible and others are not. Each lineage may employ a unique mechanism for resistance.  more » « less
Award ID(s):
2109487
PAR ID:
10470958
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The ISME Journal
Volume:
17
Issue:
12
ISSN:
1751-7362
Format(s):
Medium: X Size: p. 2352-2361
Size(s):
p. 2352-2361
Sponsoring Org:
National Science Foundation
More Like this
  1. Glass, Jennifer B (Ed.)
    ABSTRACT Environmental microorganisms have evolved a variety of strategies to survive fluctuations in environmental conditions, including the production of biofilms and differentiation into spores.Myxococcus xanthusare ubiquitous soil bacteria that produce starvation-induced multicellular fruiting bodies filled with environmentally resistant spores (a specialized biofilm). Isolated spores have been shown to be more resistant than vegetative cells to heat, ultraviolet radiation, and desiccation. The evolutionary advantage of producing spores inside fruiting bodies is not clear. Here, we examine a hypothesis that the fruiting body provides additional protection from environmental insults. We developed a high-throughput method to compare the recovery (outgrowth) of distinct cell types (vegetative cells, free spores, and spores within intact fruiting bodies) after exposure to ultraviolet radiation or desiccation. Our data indicate that haystack-shaped fruiting bodies protect spores from extended UV radiation but do not provide additional protection from desiccation. Perturbation of fruiting body morphology strongly impedes recovery from both UV exposure and desiccation. These results hint that the distinctive fruiting bodies produced by different myxobacterial species may have evolved to optimize their persistence in distinct ecological niches.IMPORTANCEEnvironmental microorganisms play an important role in the production of greenhouse gases that contribute to changing climate conditions. It is imperative to understand how changing climate conditions feedback to influence environmental microbial communities. The myxobacteria are environmentally ubiquitous social bacteria that influence the local microbial community composition. Defining how these bacteria are affected by environmental insults is a necessary component of predicting climatic feedback effects. When starved, myxobacteria produce multicellular fruiting bodies filled with spores. As spores are resistant to a variety of environmental insults, the evolutionary advantage of building a fruiting body is not clear. Using the model myxobacterium,Myxococcus xanthus, we demonstrate that the tall, haystack-shaped fruiting body morphology enables significantly more resistance to UV exposure than the free spores. In contrast, fruiting bodies are slightly detrimental to recovery from extended desiccation, an effect that is strongly exaggerated if fruiting body morphology is perturbed. These results suggest that the variety of fruiting body morphologies observed in the myxobacteria may dictate their relative resistance to changing climate conditions. 
    more » « less
  2. Abstract The establishment of symbioses between eukaryotic hosts and bacterial symbionts in nature is a dynamic process. The formation of such relationships depends on the life history of both partners. Bacterial symbionts of amoebae may have unique evolutionary trajectories to the symbiont lifestyle, because bacteria are typically ingested as prey. To persist after ingestion, bacteria must first survive phagocytosis. In the social amoebaDictyostelium discoideum, certain strains ofBurkholderiabacteria are able to resist amoebal digestion and maintain a persistent relationship that includes carriage throughout the amoeba's social cycle that culminates in spore formation. SomeBurkholderiastrains allow their host to carry other bacteria, as food. This carried food is released in new environments in a trait called farming. To better understand the diversity and prevalence ofBurkholderiasymbionts and the traits they impart to their amoebae hosts, we first screened 700 natural isolates ofD. discoideumand found 25% infected withBurkholderia. We next used a multilocus phylogenetic analysis and identified two independent transitions byBurkholderiato the symbiotic lifestyle. Finally, we tested the ability of 38 strains ofBurkholderiafromD. discoideum, as well as strains isolated from other sources, for traits relevant to symbiosis inD. discoideum. OnlyD. discoideumnative isolates belonging to theBurkholderia agricolaris,B. hayleyella, andB. bonnieaspecies were able to form persistent symbiotic associations withD. discoideum.TheBurkholderia–Dictyosteliumrelationship provides a promising arena for further studies of the pathway to symbiosis in a unique system. 
    more » « less
  3. Members of the fungal genusMorchellaare widely known for their important ecological roles and significant economic value. In this study, we used amplicon and genome sequencing to characterize bacterial communities associated with sexual fruiting bodies from wild specimens, as well as vegetative mycelium and sclerotia obtained fromMorchellaisolates grownin vitro. These investigations included diverse representatives from both Elata and EsculentaMorchellaclades. Unique bacterial community compositions were observed across the various structures examined, both within and across individualMorchellaisolates or specimens. However, specific bacterial taxa were frequently detected in association with certain structures, providing support for an associated core bacterial community. Bacteria from the genusPseudomonasandRalstoniaconstituted the core bacterial associates ofMorchellamycelia and sclerotia, while other genera (e.g.,Pedobacterspp.,Deviosaspp., andBradyrhizobiumspp.) constituted the core bacterial community of fruiting bodies. Furthermore, the importance ofPseudomonasas a key member of the bacteriome was supported by the isolation of severalPseudomonasstrains from mycelia duringin vitrocultivation. Four of the six mycelial-derivedPseudomonasisolates shared 16S rDNA sequence identity with amplicon sequences recovered directly from the examined fungal structures. Distinct interaction phenotypes (antagonistic or neutral) were observed in confrontation assays between these bacteria and variousMorchellaisolates. Genome sequences obtained from thesePseudomonasisolates revealed intriguing differences in gene content and annotated functions, specifically with respect to toxin-antitoxin systems, cell adhesion, chitinases, and insecticidal toxins. These genetic differences correlated with the interaction phenotypes. This study provides evidence thatPseudomonasspp. are frequently associated withMorchellaand these associations may greatly impact fungal physiology. 
    more » « less
  4. Abstract When multiple strains of microbes form social groups, such as the multicellular fruiting bodies ofDictyostelium discoideum, conflict can arise regarding cell fate. Both fixed and plastic differences among strains can contribute to cell fate, and plastic responses may be particularly important if social environments frequently change. We used RNA‐sequencing and photographic time series analysis to detect possible conflict‐induced plastic differences between wildD.discoideumaggregates formed by single strains compared with mixed pairs of strains (chimeras). We found one hundred and two differentially expressed genes that were enriched for biological processes including cytoskeleton organization and cyclic AMP response (up‐regulated in chimeras), and DNA replication and cell cycle (down‐regulated in chimeras). In addition, our data indicate that in reference to a time series of multicellular development in the laboratory strain AX4, chimeras may be slightly behind clonal aggregates in their development. Finally, phenotypic analysis supported slower splitting of aggregates and a nonsignificant trend for larger group sizes in chimeras. The transcriptomic comparison and phenotypic analyses support discoordination among aggregate group members due to social conflict. These results are consistent with previously observed factors that affect cell fate decision inD.discoideumand provide evidence for plasticity in cAMP signaling and phenotypic coordination during development in response to social conflict inD.discoideumand similar microbial social groups. 
    more » « less
  5. Abstract Bacterial endosymbionts can provide benefits for their eukaryotic hosts, but it is often unclear if endosymbionts benefit from these relationships. The social amoeba Dictyostelium discoideum associates with three species of Paraburkholderia endosymbionts, including P. agricolaris and P. hayleyella. These endosymbionts can be costly to the host but are beneficial in certain contexts because they allow D. discoideum to carry prey bacteria through the dispersal stage. In experiments where no other species are present, P. hayleyella benefits from D. discoideum while P. agricolaris does not. However, the presence of other species may influence this symbiosis. We tested if P. agricolaris and P. hayleyella benefit from D. discoideum in the context of resource competition with Klebsiella pneumoniae, the typical laboratory prey of D. discoideum. Without D. discoideum, K. pneumoniae depressed the growth of both Paraburkholderia symbionts, consistent with competition. P. hayleyella was more harmed by interspecific competition than P. agricolaris. We found that P. hayleyella was rescued from competition by D. discoideum, while P. agricolaris was not. This may be because P. hayleyella is more specialized as an endosymbiont; it has a highly reduced genome compared to P. agricolaris and may have lost genes relevant for resource competition outside of its host. 
    more » « less