skip to main content


Title: Properties of the jet in M87 revealed by its helical structure imaged with the VLBA at 8 and 15 GHz
ABSTRACT

We present full-track high-resolution radio observations of the jet of the galaxy M87 at 8 and 15 GHz. These observations were taken over three consecutive days in 2009 May using the Very Long Baseline Array (VLBA), one antenna of the Very Large Array (VLA), and the Effelsberg 100 m telescope. Our produced images have dynamic ranges exceeding 20 000:1 and resolve linear scales down to approximately 100 Schwarzschild radii, revealing a limb-brightened jet and a faint, steep spectrum counter-jet. We performed jet-to-counter-jet analysis, which helped estimate the physical parameters of the flow. The rich internal structure of the jet is dominated by three helical threads, likely produced by the Kelvin–Helmholtz (KH) instability developing in a supersonic flow with a Mach number of approximately 20 and an enthalpy ratio of around 0.3. We produce a clean imaging bias-corrected 8–15 GHz spectral index image, which shows spectrum flattening in regions of helical thread intersections. This further supports the KH origin of the observed internal structure of the jet. We detect polarized emission in the jet at distances of approximately 20 milliarcseconds from the core and find Faraday rotation which follows a transverse gradient across the jet. We apply Faraday rotation correction to the polarization position angle and find that the position angle changes as a function of distance from the jet axis, which suggests the presence of a helical magnetic field.

 
more » « less
NSF-PAR ID:
10470988
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
526
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 5949-5963
Size(s):
["p. 5949-5963"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The blazar J1924–2914 is a primary Event Horizon Telescope (EHT) calibrator for the Galactic center’s black hole Sagittarius A*. Here we present the first total and linearly polarized intensity images of this source obtained with the unprecedented 20 μ as resolution of the EHT. J1924–2914 is a very compact flat-spectrum radio source with strong optical variability and polarization. In April 2017 the source was observed quasi-simultaneously with the EHT (April 5–11), the Global Millimeter VLBI Array (April 3), and the Very Long Baseline Array (April 28), giving a novel view of the source at four observing frequencies, 230, 86, 8.7, and 2.3 GHz. These observations probe jet properties from the subparsec to 100 pc scales. We combine the multifrequency images of J1924–2914 to study the source morphology. We find that the jet exhibits a characteristic bending, with a gradual clockwise rotation of the jet projected position angle of about 90° between 2.3 and 230 GHz. Linearly polarized intensity images of J1924–2914 with the extremely fine resolution of the EHT provide evidence for ordered toroidal magnetic fields in the blazar compact core. 
    more » « less
  2. We present wideband (1 − 6.5 GHz) polarimetric observations, obtained with the Karl G. Jansky Very Large Array, of the merging galaxy cluster MACS J0717.5+3745, which hosts one of the most complex known radio relic and halo systems. We used both rotation measure synthesis and QU -fitting to find a reasonable agreement of the results obtained with these methods, particularly when the Faraday distribution is simple and the depolarization is mild. The relic is highly polarized over its entire length (850 kpc), reaching a fractional polarization > 30% in some regions. We also observe a strong wavelength-dependent depolarization for some regions of the relic. The northern part of the relic shows a complex Faraday distribution, suggesting that this region is located in or behind the intracluster medium (ICM). Conversely, the southern part of the relic shows a rotation measure very close to the Galactic foreground, with a rather low Faraday dispersion, indicating very little magnetoionic material intervening along the line of sight. Based on a spatially resolved polarization analysis, we find that the scatter of Faraday depths is correlated with the depolarization, indicating that the tangled magnetic field in the ICM causes the depolarization. We conclude that the ICM magnetic field could be highly turbulent. At the position of a well known narrow-angle-tailed galaxy (NAT), we find evidence of two components that are clearly separated in the Faraday space. The high Faraday dispersion component seems to be associated with the NAT, suggesting the NAT is embedded in the ICM while the southern part of the relic lies in front of it. If true, this implies that the relic and this radio galaxy are not necessarily physically connected and, thus, the relic may, in fact, not be powered by the shock re-acceleration of fossil electrons from the NAT. The magnetic field orientation follows the relic structure indicating a well-ordered magnetic field. We also detected polarized emission in the halo region; however, the absence of significant Faraday rotation and a low value of Faraday dispersion suggests the polarized emission that was previously considered as the part of the halo does, in fact, originate from the shock(s). 
    more » « less
  3. ABSTRACT

    NGC 4395 is a dwarf galaxy at a distance of about 4.3 Mpc (scale: ∼0.021 pc mas−1). It hosts an intermediate-mass black hole (IMBH) with a mass between ∼104 and ∼105 solar masses. The early radio observations of NGC 4395 with the very long baseline interferometry (VLBI) network, High Sensitivity Array (HSA), at 1.4 GHz in 2005 showed that its nucleus has a sub-mJy outflow-like feature (E) extending over 15 mas. To probe the possibility of the feature E as a continuous jet with a base physically coupled with the accretion disc, we performed deep VLBI observations with the European VLBI Network (EVN) at 5 GHz, and analysed the archival data obtained with the HSA at 1.4 GHz in 2008, NSF’s Karl G. Jansky Very Large Array (VLA) at 12–18 GHz and the Atacama Large Millimetre/submillimetre Array (ALMA) at 237 GHz. The feature E displays more diffuse structure in the HSA image of 2008 and has no compact substructure detected in the EVN image. Together with the optically thin steep spectrum and the extremely large angular offset (about 220 mas) from the accurate optical Gaia position, we explain the feature E as nuclear shocks likely formed by the IMBH’s episodic ejection or wide-angle outflow. The VLA and ALMA observations find a sub-mJy pc-scale diffuse feature, possibly tracing a thermal free–free emission region near the IMBH. There is no detection of a jet base at the IMBH position in the VLBI maps. The non-detections give an extremely low luminosity of ≤4.7 × 1033 erg s−1 at 5 GHz and indicate no evidence of a disc-jet coupling on sub-pc scales.

     
    more » « less
  4. Context.3C 84 is a nearby radio source with a complex total intensity structure, showing linear polarisation and spectral patterns. A detailed investigation of the central engine region necessitates the use of very-long-baseline interferometry (VLBI) above the hitherto available maximum frequency of 86 GHz.

    Aims.Using ultrahigh resolution VLBI observations at the currently highest available frequency of 228 GHz, we aim to perform a direct detection of compact structures and understand the physical conditions in the compact region of 3C 84.

    Methods.We used Event Horizon Telescope (EHT) 228 GHz observations and, given the limited (u, v)-coverage, applied geometric model fitting to the data. Furthermore, we employed quasi-simultaneously observed, ancillary multi-frequency VLBI data for the source in order to carry out a comprehensive analysis of the core structure.

    Results.We report the detection of a highly ordered, strong magnetic field around the central, supermassive black hole of 3C 84. The brightness temperature analysis suggests that the system is in equipartition. We also determined a turnover frequency ofνm = (113 ± 4) GHz, a corresponding synchrotron self-absorbed magnetic field ofBSSA = (2.9 ± 1.6) G, and an equipartition magnetic field ofBeq = (5.2 ± 0.6) G. Three components are resolved with the highest fractional polarisation detected for this object (mnet = (17.0 ± 3.9)%). The positions of the components are compatible with those seen in low-frequency VLBI observations since 2017–2018. We report a steeply negative slope of the spectrum at 228 GHz. We used these findings to test existing models of jet formation, propagation, and Faraday rotation in 3C 84.

    Conclusions.The findings of our investigation into different flow geometries and black hole spins support an advection-dominated accretion flow in a magnetically arrested state around a rapidly rotating supermassive black hole as a model of the jet-launching system in the core of 3C 84. However, systematic uncertainties due to the limited (u, v)-coverage, however, cannot be ignored. Our upcoming work using new EHT data, which offer full imaging capabilities, will shed more light on the compact region of 3C 84.

     
    more » « less
  5. ABSTRACT

    We analysed the parsec-scale linear polarization properties of 436 active galactic nuclei (AGNs) based on 15 GHz polarimetric Very Long Baseline Array observations. We present polarization and total intensity images averaged over at least five epochs since 1996 January 19 through 2019 August 4. Stacking improves the image sensitivity down to ∼30 μJy beam−1 and effectively fills out the jet cross-section both in total intensity and linear polarization. It delineates the long-term persistent magnetic field configuration and its regularity by restoring spatial distributions of the electric vector position angle (EVPA) and fractional polarization, respectively. On average, about 10 yr of stacking period is needed to reveal the stable and most-complete polarization distribution of a source. We find that the degree of polarization significantly increases down and across the jet towards its edges, typically manifesting U or W-shaped transverse profiles, suggesting a presence of a large-scale helical magnetic field associated with the outflow. In some AGN jets, mainly BL Lacs, we detect quasi-constant fractional polarization profiles across the jet, accompanied by EVPAs that closely follow the outflow. BL Lacs show higher fractional polarization values in their cores and jets than those in quasars up to hectoparsec de-projected scales, while on larger scales, they become comparable. High-synchrotron-peaked BL Lac jets are found to be less polarized than intermediate and low-synchrotron-peaked BL Lacs. The spatial distribution of the EVPAs in BL Lacs tend to align with the local jet direction, while quasars show an excess of orthogonal polarization orientation.

     
    more » « less