skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Joint UAV Trajectory Planning, DAG Task Scheduling, and Service Function Deployment Based on DRL in UAV-Empowered Edge Computing
Award ID(s):
2219180
PAR ID:
10471082
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Internet of Things Journal
Volume:
10
Issue:
14
ISSN:
2372-2541
Page Range / eLocation ID:
12826 to 12838
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern advances in unmanned aerial vehicle (UAV) technology have widened the scope of commercial and military applications. However, the increased dependency on wireless communications exposes UAVs to potential attacks and introduces new threats, especially from UAVs designed with the malicious intent of targeting vital infrastructures. Significant efforts have been made from researchers and other United States (U.S.) Department of Defense (DoD) agencies for developing countermeasures for detection, interception, or destruction of the malicious UAVs. One promising countermeasure is the use of a counter UAV (CUAV) swarm to detect, track, and neutralize the malicious UAV. This paper aims to recognize the state-of-the-art swarm intelligence algorithms for achieving cooperative capture of a mobile target UAV. The major design and implementation challenges for swarm control, algorithm architecture, and safety protocols are considered. A prime challenge for UAV swarms is a robust communication infrastructure to enable accurate data transfer between UAVs for efficient path planning. A multi-agent deep reinforcement learning approach is applied to train a group of CUAVs to intercept a faster malicious UAV, while avoiding collisions among other CUAVs and non-cooperating obstacles (i.e. other aerial objects maneuvering in the area). The impact of the latency incurred through UAV-to-UAV communications is showcased and discussed with preliminary numerical results. 
    more » « less
  2. null (Ed.)