Several social dimensions including social integration, status, early-life adversity, and their interactions across the life course can predict health, reproduction, and mortality in humans. Accordingly, the social environment plays a fundamental role in the emergence of phenotypes driving the evolution of aging. Recent work placing human social gradients on a biological continuum with other species provides a useful evolutionary context for aging questions, but there is still a need for a unified evolutionary framework linking health and aging within social contexts. Here, we summarize current challenges to understand the role of the social environment in human life courses. Next, we review recent advances in comparative biodemography and propose a biodemographic perspective to address socially driven health phenotype distributions and their evolutionary consequences using a nonhuman primate population. This new comparative approach uses evolutionary demography to address the joint dynamics of populations, social dimensions, phenotypes, and life history parameters. The long-term goal is to advance our understanding of the link between individual social environments, population-level outcomes, and the evolution of aging.
more »
« less
Comparative analysis of animal lifespan
Abstract Comparative studies of aging are a promising approach to identifying general properties of and processes leading to aging. While to date, many comparative studies of aging in animals have focused on relatively narrow species groups, methodological innovations now allow for studies that include evolutionary distant species. However, comparative studies of aging across a wide range of species that have distinct life histories introduce additional challenges in experimental design. Here, we discuss these challenges, highlight the most pressing problems that need to be solved, and provide suggestions based on current approaches to successfully carry out comparative aging studies across the animal kingdom.
more »
« less
- Award ID(s):
- 2213824
- PAR ID:
- 10471149
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- GeroScience
- Volume:
- 46
- Issue:
- 1
- ISSN:
- 2509-2723
- Format(s):
- Medium: X Size: p. 171-181
- Size(s):
- p. 171-181
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Social systems vary enormously across the animal kingdom, with important implications for ecological and evolutionary processes such as infectious disease dynamics, anti‐predator defence, and the evolution of cooperation. Comparing social network structures between species offers a promising route to help disentangle the ecological and evolutionary processes that shape this diversity. Comparative analyses of networks like these are challenging and have been used relatively little in ecology, but are becoming increasingly feasible as the number of empirical datasets expands. Here, we provide an overview of multispecies comparative social network studies in ecology and evolution. We identify a range of advancements that these studies have made and key challenges that they face, and we use these to guide methodological and empirical suggestions for future research. Overall, we hope to motivate wider publication and analysis of open social network datasets in animal ecology.more » « less
-
Rzhetsky, Andrey (Ed.)Abstract The increasing availability of genomic resequencing data sets and high-quality reference genomes across the tree of life present exciting opportunities for comparative population genomic studies. However, substantial challenges prevent the simple reuse of data across different studies and species, arising from variability in variant calling pipelines, data quality, and the need for computationally intensive reanalysis. Here, we present snpArcher, a flexible and highly efficient workflow designed for the analysis of genomic resequencing data in nonmodel organisms. snpArcher provides a standardized variant calling pipeline and includes modules for variant quality control, data visualization, variant filtering, and other downstream analyses. Implemented in Snakemake, snpArcher is user-friendly, reproducible, and designed to be compatible with high-performance computing clusters and cloud environments. To demonstrate the flexibility of this pipeline, we applied snpArcher to 26 public resequencing data sets from nonmammalian vertebrates. These variant data sets are hosted publicly to enable future comparative population genomic analyses. With its extensibility and the availability of public data sets, snpArcher will contribute to a broader understanding of genetic variation across species by facilitating the rapid use and reuse of large genomic data sets.more » « less
-
Duque, Gustavo (Ed.)Abstract The Midwest Aging Consortium (MAC) has emerged as a critical collaborative initiative aimed at advancing our understanding of aging and developing strategies to combat the rising prevalence of age-related diseases. Founded in 2019, MAC brings together researchers from various disciplines and institutions across the Midwestern United States to foster interdisciplinary geroscience research. This report summarizes the highlights of the Fourth Annual Symposium of MAC, which was held at Iowa State University in May 2023. The symposium featured presentations on a wide array of topics, including studies on slow-aging animals, cellular senescence and senotherapeutics, the role of the immune system in aging, metabolic changes in aging, neuronal health in aging, and biomarkers for measuring the aging process. Speakers shared findings from studies involving a variety of animals, ranging from commonly used species such as mice, rats, worms, yeast, and fruit flies, to less-common ones like naked mole-rats, painted turtles, and rotifers. MAC continues to emphasize the importance of supporting emerging researchers and fostering a collaborative environment, positioning itself as a leader in aging research. This symposium not only showcased the current state of aging biology research but also highlighted the consortium’s role in training the next generation of scientists dedicated to improving the healthspan and well-being of the aging population.more » « less
-
Synopsis Adverse experiences in early life are associated with aging-related disease risk and mortality across many species. In humans, confounding factors, as well as the difficulty of directly measuring experiences and outcomes from birth till death, make it challenging to identify how early life adversity impacts aging and health. These challenges can be mitigated, in part, through the study of non-human animals, which are exposed to parallel forms of adversity and can age similarly to humans. Furthermore, studying the links between early life adversity and aging in natural populations of non-human animals provides an excellent opportunity to better understand the social and ecological pressures that shaped the evolution of early life sensitivities. Here, we highlight ongoing and future research directions that we believe will most effectively contribute to our understanding of the evolution of early life sensitivities and their repercussions.more » « less
An official website of the United States government
