Abstract The geroscience hypothesis suggests that addressing the fundamental mechanisms driving aging biology will prevent or mitigate the onset of multiple chronic diseases, for which the largest risk factor is advanced age. Research that investigates the root causes of aging is therefore of critical importance given the rising healthcare burden attributable to age-related diseases. The third annual Midwest Aging Consortium symposium was convened as a showcase of such research performed by investigators from institutions across the Midwestern United States. This report summarizes the work presented during a virtual conference across topics in aging biology, including immune function in the lung—particularly timely given the Corona Virus Immune Disease-2019 pandemic—along with the role of metabolism and nutrient-regulated pathways in cellular function with age, the influence of senescence on stem cell function and inflammation, and our evolving understanding of the mechanisms underlying observation of sex dimorphism in aging-related outcomes. The symposium focused on early-stage and emerging investigators, while including keynote presentations from leaders in the biology of aging field, highlighting the diversity and strength of aging research in the Midwest.
more »
« less
This content will become publicly available on November 1, 2025
The Fourth Annual Symposium of the Midwest Aging Consortium
Abstract The Midwest Aging Consortium (MAC) has emerged as a critical collaborative initiative aimed at advancing our understanding of aging and developing strategies to combat the rising prevalence of age-related diseases. Founded in 2019, MAC brings together researchers from various disciplines and institutions across the Midwestern United States to foster interdisciplinary geroscience research. This report summarizes the highlights of the Fourth Annual Symposium of MAC, which was held at Iowa State University in May 2023. The symposium featured presentations on a wide array of topics, including studies on slow-aging animals, cellular senescence and senotherapeutics, the role of the immune system in aging, metabolic changes in aging, neuronal health in aging, and biomarkers for measuring the aging process. Speakers shared findings from studies involving a variety of animals, ranging from commonly used species such as mice, rats, worms, yeast, and fruit flies, to less-common ones like naked mole-rats, painted turtles, and rotifers. MAC continues to emphasize the importance of supporting emerging researchers and fostering a collaborative environment, positioning itself as a leader in aging research. This symposium not only showcased the current state of aging biology research but also highlighted the consortium’s role in training the next generation of scientists dedicated to improving the healthspan and well-being of the aging population.
more »
« less
- Award ID(s):
- 2046984
- PAR ID:
- 10570963
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Editor(s):
- Duque, Gustavo
- Publisher / Repository:
- Oxford Academic
- Date Published:
- Journal Name:
- The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences
- Volume:
- 79
- Issue:
- 11
- ISSN:
- 1079-5006
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synopsis Mechanosensory information is a critical component of organismal movement control systems. Understanding the role mechanosensation plays in modulating organismal behavior requires inherently multidisciplinary research programs that reach across biological scales. Recently, there have been rapid advances in discerning how mechanosensory mechanisms are integrated into neural control systems and the impact mechanosensory information has on behavior. Thus, the Symposium “The Role of Mechanosensation in Robust Locomotion” at the 2023 Annual Meeting of the Society for Integrative and Comparative Biology was convened to discuss these recent advances, compare and contrast different systems, share experimental advice, and inspire collaborative approaches to expand and synthesize knowledge. The diverse set of speakers presented on a variety of vertebrate, invertebrate, and robotic systems. Discussion at the symposium resulted in a series of manuscripts presented in this issue that address issues facing the broader field, mechanisms of mechanosensation, organismal function and biomechanics, and sensing in ecological and social contexts.more » « less
-
null (Ed.)Abstract. Organic aerosol (OA) emissions from biomass burning havebeen the subject of intense research in recent years, involving acombination of field campaigns and laboratory studies. These efforts haveaimed at improving our limited understanding of the diverse processes andpathways involved in the atmospheric processing and evolution of OAproperties, culminating in their accurate parameterizations in climate andchemical transport models. To bring closure between laboratory and fieldstudies, wildfire plumes in the western United States were sampled andcharacterized for their chemical and optical properties during theground-based segment of the 2019 Fire Influence on Regional to GlobalEnvironments and Air Quality (FIREX-AQ) field campaign. Using acustom-developed multiwavelength integrated photoacoustic-nephelometerspectrometer in conjunction with a suite of instruments, including anoxidation flow reactor equipped to generate hydroxyl (OH⚫) ornitrate (NO3⚫) radicals to mimic daytime or nighttimeoxidative aging processes, we investigated the effects of multipleequivalent hours of OH⚫ or NO3⚫ exposure onthe chemical composition and mass absorption cross-sections (MAC(λ)) at 488 and 561 nm of OA emitted from wildfires in Arizona and Oregon. Wefound that OH⚫ exposure induced a slight initial increase inabsorption corresponding to short timescales; however, at longer timescales, the wavelength-dependent MAC(λ) decreased by a factor of0.72 ± 0.08, consistent with previous laboratory studies and reportsof photobleaching. On the other hand, NO3⚫ exposure increasedMAC(λ) by a factor of up to 1.69 ± 0.38. We also noted somesensitivity of aerosol aging to different fire conditions between Arizonaand Oregon. The MAC(λ) enhancement following NO3⚫ exposure was found to correlate with an enhancement in CHO1N andCHOgt1N ion families measured by an Aerodyne aerosol mass spectrometer.more » « less
-
Abstract Comparative studies of aging are a promising approach to identifying general properties of and processes leading to aging. While to date, many comparative studies of aging in animals have focused on relatively narrow species groups, methodological innovations now allow for studies that include evolutionary distant species. However, comparative studies of aging across a wide range of species that have distinct life histories introduce additional challenges in experimental design. Here, we discuss these challenges, highlight the most pressing problems that need to be solved, and provide suggestions based on current approaches to successfully carry out comparative aging studies across the animal kingdom.more » « less
-
Abstract Advances in RNA biology such as RNAi, CRISPR, and the first mRNA vaccine represent the enormous potential of RNA research to address current problems. Additionally, plants are a diverse and undeniably essential resource for life threatened by climate change, loss of arable land, and pollution. Different aspects of RNA such as its processing, modification and structure are intertwined with plant development, physiology and stress response. This report details the findings of researchers around the world during the 23rd Penn State Symposium in Plant Biology with a focus in RNA biology.more » « less