skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Decentralized Multi-Robot Information Gathering From Unknown Spatial Fields
We present an incremental scalable motion planning algorithm for finding maximally informative trajectories for decentralized mobile robots. These robots are deployed to observe an unknown spatial field, where the informativeness of observations is specified as a density function. Existing works that are typically restricted to discrete domains and synchronous planning often scale poorly depending on the size of the problem. Our goal is to design a distributed control law in continuous domains and an asynchronous communication strategy to guide a team of cooperative robots to visit the most informative locations within a limited mission duration. Our proposed Asynchronous Information Gathering with Bayesian Optimization (AsyncIGBO) algorithm extends ideas from asynchronous Bayesian Optimization (BO) to efficiently sample from a density function. It then combines them with decentralized reactive motion planning techniques to achieve efficient multi-robot information gathering activities. We provide a theoretical justification for our algorithm by deriving an asymptotic no-regret analysis with respect to a known spatial field. Our proposed algorithm is extensively validated through simulation and real-world experiment results with multiple robots.  more » « less
Award ID(s):
2024733 2034123
PAR ID:
10471225
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE Robotics and Automation Letters
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
Volume:
8
Issue:
5
ISSN:
2377-3774
Page Range / eLocation ID:
3070 to 3077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper reports on developing an integrated framework for safety-aware informative motion planning suitable for legged robots. The information-gathering planner takes a dense stochastic map of the environment into account, while safety constraints are enforced via Control Barrier Functions (CBFs). The planner is based on the Incrementally-exploring Information Gathering (IIG) algorithm and allows closed-loop kinodynamic node expansion using a Model Predictive Control (MPC) formalism. Robotic exploration and information gathering problems are inherently path-dependent problems. That is, the information collected along a path depends on the state and observation history. As such, motion planning solely based on a modular cost does not lead to suitable plans for exploration. We propose SAFE-IIG, an integrated informative motion planning algorithm that takes into account: 1) a robot’s perceptual field of view via a submodular information function computed over a stochastic map of the environment, 2) a robot’s dynamics and safety constraints via discrete-time CBFs and MPC for closedloop multi-horizon node expansions, and 3) an automatic stopping criterion via setting an information-theoretic planning horizon. The simulation results show that SAFE-IIG can plan a safe and dynamically feasible path while exploring a dense map. 
    more » « less
  2. null (Ed.)
    Abstract Swarm robotic search aims at searching targets using a large number of collaborating simple mobile robots, with applications to search and rescue and hazard localization. In this regard, decentralized swarm systems are touted for their coverage scalability, time efficiency, and fault tolerance. To guide the behavior of such swarm systems, two broad classes of approaches are available, namely, nature-inspired swarm heuristics and multi-robotic search methods. However, the ability to simultaneously achieve efficient scalability and provide fundamental insights into the exhibited behavior (as opposed to exhibiting a black-box behavior) remains an open problem. To address this problem, this paper extends the underlying search approach in batch-Bayesian optimization to perform search with embodied swarm agents operating in a (simulated) physical 2D arena. Key contributions lie in (1) designing an acquisition function that not only balances exploration and exploitation across the swarm but also allows modeling knowledge extraction over trajectories and (2) developing its distributed implementation to allow asynchronous task inference and path planning by the swarm robots. The resulting collective informative path planning approach is tested on target-search case studies of varying complexity, where the target produces a spatially varying (measurable) signal. Notably, superior performance, in terms of mission completion efficiency, is observed compared to exhaustive search and random walk baselines as well as a swarm optimization-based state-of-the-art method. Favorable scalability characteristics are also demonstrated. 
    more » « less
  3. This paper investigates the problem of informative path planning for a mobile robotic sensor network in spatially temporally distributed mapping. The robots are able to gather noisy measurements from an area of interest during their movements to build a Gaussian process (GP) model of a spatio-temporal field. The model is then utilized to predict the spatio-temporal phenomenon at different points of interest. To spatially and temporally navigate the group of robots so that they can optimally acquire maximal information gains while their connectivity is preserved, we propose a novel multi-step prediction informative path planning optimization strategy employing our newly defined local cost functions. By using the dual decomposition method, it is feasible and practical to effectively solve the optimization problem in a distributed manner. The proposed method was validated through synthetic experiments utilizing real-world data sets. 
    more » « less
  4. null (Ed.)
    In many exploration scenarios, it is important for robots to efficiently explore new areas and constantly communicate results. Mobile robots inherently couple motion and network topology due to the effects of position on wireless propagation, e.g., distance or obstacles between network nodes. Information gain is a useful measure of exploration. However, finding paths that maximize information gain while preserving communication is challenging due to the non-Markovian nature of information gain, discontinuities in network topology, and zero-reward local optima. We address these challenges through an optimization and sampling-based algorithm. Our algorithm scales to 50% more robots and obtains 2-5 times more information relative to path cost compared to baseline planning approaches. 
    more » « less
  5. This paper addresses the Informative Path Planning (IPP) algorithm for autonomous robots to explore unknown 2D environments for mapping purposes. IPP can be beneficial to many applications such as search and rescue and cave exploration, where mapping an unknown environment is necessary. Autonomous robots' limited operation time due to their finite battery necessitates an efficient IPP algorithm, however, it is challenging because autonomous robots may not have any information about the environment. In this paper, we formulate a mathematical structure of the IPP problem along with the derivation of the optimal control input. Then, a discretized model for the IPP algorithm is presented as a solution for exploring an unknown environment. The proposed approach provides relatively fast computation time while being applicable to broad robot and sensor platforms. Various simulation results are provided to show the performance of the proposed IPP algorithm. 
    more » « less