skip to main content


Title: Localization in Seemingly Sensory-Denied Environments through Spatio-Temporal Varying Fields
Localization in underwater environments is a fundamental problem for autonomous vehicles with important applications such as underwater ecology monitoring, infrastructure maintenance, and conservation of marine species. However, several traditional sensing modalities used for localization in outdoor robotics (e.g., GPS, compasses, LIDAR, and Vision) are compromised in underwater scenarios. In addition, other problems such as aliasing, drifting, and dynamic changes in the environment also affect state estimation in aquatic environments. Motivated by these issues, we propose novel state estimation algorithms for underwater vehicles that can read noisy sensor observations in spatio-temporal varying fields in water (e.g., temperature, pH, chlorophyll-A, and dissolved oxygen) and have access to a model of the evolution of the fields as a set of partial differential equations. We frame the underwater robot localization in an optimization framework and formulate, study, and solve the state-estimation problem. First, we find the most likely position given a sequence of observations, and we prove upper and lower bounds for the estimation error given information about the error and the fields. Our methodology can find the actual location within a 95% confidence interval around the median in over 90% of the cases in different conditions and extensions.  more » « less
Award ID(s):
2024733
NSF-PAR ID:
10471226
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2022 Sixth IEEE International Conference on Robotic Computing (IRC)
Page Range / eLocation ID:
142 to 147
Format(s):
Medium: X
Location:
Italy
Sponsoring Org:
National Science Foundation
More Like this
  1. Scientists continue to study the red tide and fish-kill events happening in Florida. Machine learning applications using remote sensing data on coastal waters to monitor water quality parameters and detect harmful algal blooms are also being studied. Unmanned Surface Vehicles (USVs) and Autonomous Underwater Vehicles (AUVs) are often deployed on data collection and disaster response missions. To enhance study and mitigation efforts, robots must be able to use available data to navigate these underwater environments. In this study, we compute a satellite-derived underwater environment (SDUE) model by implementing a supervised machine learning model where remote sensing reflectance (Rrs) indices are labeled with in-situ data they correlate with. The models predict bathymetry and water quality parameters given a recent remote sensing image. In our experiment, we use Sentine1-2 (S2) images and in-situ data of the Biscayne Bay to create an SDUE that can be used as a Chlorophyll-a map. The SDUE is then used in an Extended Kalman Filter (EKF) application that solves an underwater vehicle localization and navigation problem. 
    more » « less
  2. This dataset contains monthly average output files from the iCAM6 simulations used in the manuscript "Enhancing understanding of the hydrological cycle via pairing of process-oriented and isotope ratio tracers," in review at the Journal of Advances in Modeling Earth Systems. A file corresponding to each of the tagged and isotopic variables used in this manuscript is included. Files are at 0.9° latitude x 1.25° longitude, and are in NetCDF format. Data from two simulations are included: 1) a simulation where the atmospheric model was "nudged" to ERA5 wind and surface pressure fields, by adding an additional tendency (see section 3.1 of associated manuscript), and 2) a simulation where the atmospheric state was allowed to freely evolve, using only boundary conditions imposed at the surface and top of atmosphere. Specific information about each of the variables provided is located in the "usage notes" section below. Associated article abstract: The hydrologic cycle couples the Earth's energy and carbon budgets through evaporation, moisture transport, and precipitation. Despite a wealth of observations and models, fundamental limitations remain in our capacity to deduce even the most basic properties of the hydrological cycle, including the spatial pattern of the residence time (RT) of water in the atmosphere and the mean distance traveled from evaporation sources to precipitation sinks. Meanwhile, geochemical tracers such as stable water isotope ratios provide a tool to probe hydrological processes, yet their interpretation remains equivocal despite several decades of use. As a result, there is a need for new mechanistic tools that link variations in water isotope ratios to underlying hydrological processes. Here we present a new suite of “process-oriented tags,” which we use to explicitly trace hydrological processes within the isotopically enabled Community Atmosphere Model, version 6 (iCAM6). Using these tags, we test the hypotheses that precipitation isotope ratios respond to parcel rainout, variations in atmospheric RT, and preserve information regarding meteorological conditions during evaporation. We present results for a historical simulation from 1980 to 2004, forced with winds from the ERA5 reanalysis. We find strong evidence that precipitation isotope ratios record information about atmospheric rainout and meteorological conditions during evaporation, but little evidence that precipitation isotope ratios vary with water vapor RT. These new tracer methods will enable more robust linkages between observations of isotope ratios in the modern hydrologic cycle or proxies of past terrestrial environments and the environmental processes underlying these observations.   Details about the simulation setup can be found in section 3 of the associated open-source manuscript, "Enhancing understanding of the hydrological cycle via pairing of process‐oriented and isotope ratio tracers." In brief, we conducted two simulations of the atmosphere from 1980-2004 using the isotope-enabled version of the Community Atmosphere Model 6 (iCAM6) at 0.9x1.25° horizontal resolution, and with 30 vertical hybrid layers spanning from the surface to ~3 hPa. In the first simulation, wind and surface pressure fields were "nudged" toward the ERA5 reanalysis dataset by adding a nudging tendency, preventing the model from diverging from observed/reanalysis wind fields. In the second simulation, no additional nudging tendency was included, and the model was allowed to evolve 'freely' with only boundary conditions provided at the top (e.g., incoming solar radiation) and bottom (e.g., observed sea surface temperatures) of the model. In addition to the isotopic variables, our simulation included a suite of 'process-oriented tracers,' which we describe in section 2 of the manuscript. These variables are meant to track a property of water associated with evaporation, condensation, or atmospheric transport. Metadata are provided about each of the files below; moreover, since the attached files are NetCDF data - this information is also provided with the data files. NetCDF metadata can be accessed using standard tools (e.g., ncdump). Each file has 4 variables: the tagged quantity, and the associated coordinate variables (time, latitude, longitude). The latter three are identical across all files, only the tagged quantity changes. Twelve files are provided for the nudged simulation, and an additional three are provided for the free simulations: Nudged simulation files iCAM6_nudged_1980-2004_mon_RHevap: Mass-weighted mean evaporation source property: RH (%) with respect to surface temperature. iCAM6_nudged_1980-2004_mon_Tevap: Mass-weighted mean evaporation source property: surface temperature in Kelvin iCAM6_nudged_1980-2004_mon_Tcond: Mass-weighted mean condensation property: temperature (K) iCAM6_nudged_1980-2004_mon_columnQ: Total (vertically integrated) precipitable water (kg/m2).  Not a tagged quantity, but necessary to calculate depletion times in section 4.3 (e.g., Fig. 11 and 12). iCAM6_nudged_1980-2004_mon_d18O: Precipitation d18O (‰ VSMOW) iCAM6_nudged_1980-2004_mon_d18Oevap_0: Mass-weighted mean evaporation source property - d18O of the evaporative flux (e.g., the 'initial' isotope ratio prior to condensation), (‰ VSMOW) iCAM6_nudged_1980-2004_mon_dxs: Precipitation deuterium excess (‰ VSMOW) - note that precipitation d2H can be calculated from this file and the precipitation d18O as d2H = d-excess - 8*d18O. iCAM6_nudged_1980-2004_mon_dexevap_0: Mass-weighted mean evaporation source property - deuterium excess of the evaporative flux iCAM6_nudged_1980-2004_mon_lnf: Integrated property - ln(f) calculated from the constant-fractionation d18O tracer (see section 3.2). iCAM6_nudged_1980-2004_mon_precip: Total precipitation rate in m/s. Note there is an error in the metadata in this file - it is total precipitation, not just convective precipitation. iCAM6_nudged_1980-2004_mon_residencetime: Mean atmospheric water residence time (in days). iCAM6_nudged_1980-2004_mon_transportdistance: Mean atmospheric water transport distance (in km). Free simulation files iCAM6_free_1980-2004_mon_d18O: Precipitation d18O (‰ VSMOW) iCAM6_free_1980-2004_mon_dxs: Precipitation deuterium excess (‰ VSMOW) - note that precipitation d2H can be calculated from this file and the precipitation d18O as d2H = d-excess - 8*d18O. iCAM6_free_1980-2004_mon_precip: Total precipitation rate in m/s. Note there is an error in the metadata in this file - it is total precipitation, not just convective precipitation. 
    more » « less
  3. Deep inertial sequence learning has shown promising odometric resolution over model-based approaches for trajectory estimation in GPS-denied environments. However, existing neural inertial dead-reckoning frameworks are not suitable for real-time deployment on ultra-resource-constrained (URC) devices due to substantial memory, power, and compute bounds. Current deep inertial odometry techniques also suffer from gravity pollution, high-frequency inertial disturbances, varying sensor orientation, heading rate singularity, and failure in altitude estimation. In this paper, we introduce TinyOdom, a framework for training and deploying neural inertial models on URC hardware. TinyOdom exploits hardware and quantization-aware Bayesian neural architecture search (NAS) and a temporal convolutional network (TCN) backbone to train lightweight models targetted towards URC devices. In addition, we propose a magnetometer, physics, and velocity-centric sequence learning formulation robust to preceding inertial perturbations. We also expand 2D sequence learning to 3D using a model-free barometric g-h filter robust to inertial and environmental variations. We evaluate TinyOdom for a wide spectrum of inertial odometry applications and target hardware against competing methods. Specifically, we consider four applications: pedestrian, animal, aerial, and underwater vehicle dead-reckoning. Across different applications, TinyOdom reduces the size of neural inertial models by 31× to 134× with 2.5m to 12m error in 60 seconds, enabling the direct deployment of models on URC devices while still maintaining or exceeding the localization resolution over the state-of-the-art. The proposed barometric filter tracks altitude within ±0.1m and is robust to inertial disturbances and ambient dynamics. Finally, our ablation study shows that the introduced magnetometer, physics, and velocity-centric sequence learning formulation significantly improve localization performance even with notably lightweight models. 
    more » « less
  4. Bearing only cooperative localization has been used successfully on aerial and ground vehicles. In this paper we present an extension of the approach to the underwater domain. The focus is on adapting the technique to handle the challenging visibility conditions underwater. Furthermore, data from inertial, magnetic, and depth sensors are utilized to improve the robustness of the estimation. In addition to robotic applications, the presented technique can be used for cave mapping and for marine archeology surveying, both by human divers. Experimental results from different environments, including a fresh water, low visibility, lake in South Carolina; a cavern in Florida; and coral reefs in Barbados during the day and during the night, validate the robustness and the accuracy of the proposed approach. 
    more » « less
  5. Collaborative object localization aims to collaboratively estimate locations of objects observed from multiple views or perspectives, which is a critical ability for multi-agent systems such as connected vehicles. To enable collaborative localization, several model-based state estimation and learning-based localization methods have been developed. Given their encouraging performance, model-based state estimation often lacks the ability to model the complex relationships among multiple objects, while learning-based methods are typically not able to fuse the observations from an arbitrary number of views and cannot well model uncertainty. In this paper, we introduce a novel spatiotemporal graph filter approach that integrates graph learning and model-based estimation to perform multi-view sensor fusion for collaborative object localization. Our approach models complex object relationships using a new spatiotemporal graph representation and fuses multi-view observations in a Bayesian fashion to improve location estimation under uncertainty. We evaluate our approach in the applications of connected autonomous driving and multiple pedestrian localization. Experimental results show that our approach outperforms previous techniques and achieves the state-of-the-art performance on collaborative localization. 
    more » « less