skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fourier series-based approximation of time-varying parameters in ordinary differential equations
Abstract Many real-world systems modeled using differential equations involve unknown or uncertain parameters. Standard approaches to address parameter estimation inverse problems in this setting typically focus on estimating constants; yet some unobservable system parameters may vary with time without known evolution models. In this work, we propose a novel approximation method inspired by the Fourier series to estimate time-varying parameters in deterministic dynamical systems modeled with ordinary differential equations. Using ensemble Kalman filtering in conjunction with Fourier series-based approximation models, we detail two possible implementation schemes for sequentially updating the time-varying parameter estimates given noisy observations of the system states. We demonstrate the capabilities of the proposed approach in estimating periodic parameters, both when the period is known and unknown, as well as non-periodic time-varying parameters of different forms with several computed examples using a forced harmonic oscillator. Results emphasize the importance of the frequencies and number of approximation model terms on the time-varying parameter estimates and corresponding dynamical system predictions.  more » « less
Award ID(s):
1819203
PAR ID:
10487368
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing Ltd.
Date Published:
Journal Name:
Inverse Problems
ISSN:
0266-5611
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Estimating and quantifying uncertainty in unknown system parameters from limited data remains a challenging inverse problem in a variety of real-world applications. While many approaches focus on estimating constant parameters, a subset of these problems includes time-varying parameters with unknown evolution models that often cannot be directly observed. This work develops a systematic particle filtering approach that reframes the idea behind artificial parameter evolution to estimate time-varying parameters in nonstationary inverse problems arising from deterministic dynamical systems. Focusing on systems modeled by ordinary differential equations, we present two particle filter algorithms for time-varying parameter estimation: one that relies on a fixed value for the noise variance of a parameter random walk; another that employs online estimation of the parameter evolution noise variance along with the time-varying parameter of interest. Several computed examples demonstrate the capability of the proposed algorithms in estimating time-varying parameters with different underlying functional forms and different relationships with the system states (i.e. additive vs. multiplicative). 
    more » « less
  2. Estimating and quantifying uncertainty in system parameters remains a big challenge in applied and computational mathematics. A subset of these problems includes estimating periodic parameters that have unknown dynamics. Along with their time series, the period of these parameters may also be unknown and need to be estimated. The aim of this paper is to address the periodic parameter estimation problem, with particular focus on exploring the associated uncertainty, using Monte Carlo particle methods, such as the ensemble Kalman filter. Both parameter tracking and piecewise function approximations of periodic parameters are considered, highlighting aspects of parameter uncertainty in each approach when considering factors such as the frequency of available data and the number of piecewise segments used in the approximation. Estimation of the period of the periodic parameters and related uncertainty is also analyzed in the piecewise formulation. The pros and cons of each approach are discussed relative to a numerical example estimating the external voltage parameter in the FitzHugh-Nagumo system for modeling the spiking dynamics of neurons. 
    more » « less
  3. Mathematical models based on systems of ordinary differential equations (ODEs) are frequently applied in various scientific fields to assess hypotheses, estimate key model parameters, and generate predictions about the system's state. To support their application, we present a comprehensive, easy‐to‐use, and flexible MATLAB toolbox,QuantDiffForecast, and associated tutorial to estimate parameters and generate short‐term forecasts with quantified uncertainty from dynamical models based on systems of ODEs. We provide software (https://github.com/gchowell/paramEstimation_forecasting_ODEmodels/) and detailed guidance on estimating parameters and forecasting time‐series trajectories that are characterized using ODEs with quantified uncertainty through a parametric bootstrapping approach. It includes functions that allow the user to infer model parameters and assess forecasting performance for different ODE models specified by the user, using different estimation methods and error structures in the data. The tutorial is intended for a diverse audience, including students training in dynamic systems, and will be broadly applicable to estimate parameters and generate forecasts from models based on ODEs. The functions included in the toolbox are illustrated using epidemic models with varying levels of complexity applied to data from the 1918 influenza pandemic in San Francisco. A tutorial video that demonstrates the functionality of the toolbox is included. 
    more » « less
  4. Many chemical reactions and molecular processes occur on time scales that are significantly longer than those accessible by direct simulations. One successful approach to estimating dynamical statistics for such processes is to use many short time series of observations of the system to construct a Markov state model, which approximates the dynamics of the system as memoryless transitions between a set of discrete states. The dynamical Galerkin approximation (DGA) is a closely related framework for estimating dynamical statistics, such as committors and mean first passage times, by approximating solutions to their equations with a projection onto a basis. Because the projected dynamics are generally not memoryless, the Markov approximation can result in significant systematic errors. Inspired by quasi-Markov state models, which employ the generalized master equation to encode memory resulting from the projection, we reformulate DGA to account for memory and analyze its performance on two systems: a two-dimensional triple well and the AIB9 peptide. We demonstrate that our method is robust to the choice of basis and can decrease the time series length required to obtain accurate kinetics by an order of magnitude. 
    more » « less
  5. Abstract Bayesian particle filters (PFs) are a viable alternative to sampling methods such as Markov chain Monte Carlo methods to estimate model parameters and related uncertainties when the forward model is a dynamical system, and the data are time series that depend on the state vector. PF techniques are particularly attractive when the dimensionality of the state space is large and the numerical solution of the dynamical system over the time interval corresponding to the data is time consuming. Moreover, information contained in the PF solution can be used to infer on the sensitivity of the unknown parameters to different temporal segments of the data. This, in turn, can guide the design of more efficient and effective data collection procedures. In this article the PF method is applied to the problem of estimating cell membrane permeability to gases from pH measurements on or near the cell membrane. The forward model in this case comprises a spatially distributed system of coupled reaction–diffusion differential equations. The high dimensionality of the state space and the need to account for the micro-environment created by the pH electrode measurement device are additional challenges that are addressed by the solution method. 
    more » « less