Abstract BackgroundRoot and soil microbial communities constitute the below-ground plant microbiome, are drivers of nutrient cycling, and affect plant productivity. However, our understanding of their spatiotemporal patterns is confounded by exogenous factors that covary spatially, such as changes in host plant species, climate, and edaphic factors. These spatiotemporal patterns likely differ across microbiome domains (bacteria and fungi) and niches (root vs. soil). ResultsTo capture spatial patterns at a regional scale, we sampled the below-ground microbiome of switchgrass monocultures of five sites spanning > 3 degrees of latitude within the Great Lakes region. To capture temporal patterns, we sampled the below-ground microbiome across the growing season within a single site. We compared the strength of spatiotemporal factors to nitrogen addition determining the major drivers in our perennial cropping system. All microbial communities were most strongly structured by sampling site, though collection date also had strong effects; in contrast, nitrogen addition had little to no effect on communities. Though all microbial communities were found to have significant spatiotemporal patterns, sampling site and collection date better explained bacterial than fungal community structure, which appeared more defined by stochastic processes. Root communities, especially bacterial, were more temporally structured than soil communities which were more spatially structured, both across and within sampling sites. Finally, we characterized a core set of taxa in the switchgrass microbiome that persists across space and time. These core taxa represented < 6% of total species richness but > 27% of relative abundance, with potential nitrogen fixing bacteria and fungal mutualists dominating the root community and saprotrophs dominating the soil community. ConclusionsOur results highlight the dynamic variability of plant microbiome composition and assembly across space and time, even within a single variety of a plant species. Root and soil fungal community compositions appeared spatiotemporally paired, while root and soil bacterial communities showed a temporal lag in compositional similarity suggesting active recruitment of soil bacteria into the root niche throughout the growing season. A better understanding of the drivers of these differential responses to space and time may improve our ability to predict microbial community structure and function under novel conditions.
more »
« less
Stochastic and deterministic processes shape bioenergy crop microbiomes along a vertical soil niche
Abstract Sustainable biofuel cropping systems aim to address climate change while meeting energy needs. Understanding how soil and plant‐associated microbes respond to these different cropping systems is key to promoting agriculture sustainability and evaluating changes in ecosystem functions. Here, we leverage a long‐term biofuel cropping system field experiment to dissect soil and root microbiome changes across a soil‐depth gradient in poplar, restored prairie and switchgrass to understand their effects on the microbial communities. High throughput amplicon sequencing of the fungal internal transcribed spacer (ITS) and prokaryotic 16S DNA regions showed a common trend of root and soil microbial community richness decreasing and evenness increasing with depth. Ecological niche (root vs. soil) had the strongest effect on community structure, followed by depth, then crop. Stochastic processes dominated the structuring of fungal communities in deeper soil layers while operational taxonomic units (OTUs) in surface soil layers were more likely to co‐occur and to be enriched by plant hosts. Prokaryotic communities were dispersal limited at deeper depths. Microbial networks showed a higher density, connectedness, average degree and module size in deeper soils. We observed a decrease in fungal‐fungal links and an increase of bacteria–bacteria links with increasing depth in all crops, particularly in the root microbiome.
more »
« less
- Award ID(s):
- 1737898
- PAR ID:
- 10471296
- Publisher / Repository:
- Environmental Microbiology
- Date Published:
- Journal Name:
- Environmental Microbiology
- Volume:
- 25
- Issue:
- 2
- ISSN:
- 1462-2912
- Page Range / eLocation ID:
- 352 to 366
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Most soil carbon (C) is in the form of soil organic matter (SOM), the composition of which is controlled by the plant–microbe–soil continuum. The extent to which plant and microbial inputs contribute to persistent SOM has been linked to edaphic properties such as mineralogy and aggregation. However, it is unknown how variation in plant inputs, microbial community structure, and soil physical and chemical attributes interact to influence the chemical classes that comprise SOM pools. We used two long‐term biofuel feedstock field experiments to test the influence of cropping systems (corn and switchgrass) and soil characteristics (sandy and silty loams) on microbial selection and SOM chemistry. Cropping system had a strong influence on water‐extractable organic C chemistry with perennial switchgrass generally having a higher chemical richness than the annual corn cropping system. Nonetheless, cropping system was a less influential driver of soil microbial community structure and overall C chemistry than soil type. Soil type was especially influential on fungal community structure and the chemical composition of the chloroform‐extractable C. Although plant inputs strongly influence the substrates available for decomposition and SOM formation, total C and nitrogen (N) did not differ between cropping systems within either site. We conclude this is likely due to enhanced microbial activity under the perennial cropping system. Silty soils also had a higher activity of phosphate and C liberating enzymes. After 8 years, silty loams still contained twice the total C and N as sandy loams, with no significant response to biofuel cropping system inputs. Together, these results demonstrate that initial site selection is critical to plant–microbe interactions and substantially impacts the potential for long‐term C accrual in soils under biofuel feedstock production.more » « less
-
null (Ed.)Microbial communities help plants access nutrients and tolerate stress. Some microbiomes are specific to plant genotypes and, therefore, may contribute to intraspecific differences in plant growth and be a promising target for plant breeding. Switchgrass (Panicum virgatum) is a potential bioenergy crop with broad variation in yields and environmental responses; recent studies suggest that associations with distinct microbiomes may contribute to variation in cultivar yields. We used a common garden experiment to investigate variation in 12 mature switchgrass cultivar soil microbiomes and, furthermore, to examine how root traits and soil conditions influence microbiome structure. We found that average root diameter varied up to 33% among cultivars and that the cultivars also associated with distinct soil microbiomes. Cultivar had a larger effect on the soil bacterial than fungal community but both were strongly influenced by soil properties. Root traits had a weaker effect on microbiome structure but root length contributed to variation in the fungal community. Unlike the soil communities, the root bacterial communities did not group by cultivar, based on a subset of samples. Microbial biomass carbon and nitrogen and the abundance of several dominant bacterial phyla varied between ecotypes but overall the differences in soil microbiomes were greater among cultivars than between ecotypes. Our findings show that there is not one soil microbiome that applies to all switchgrass cultivars, or even to each ecotype. These subtle but significant differences in root traits, microbial biomass, and the abundance of certain soil bacteria could explain differences in cultivar yields and environmental responses.more » « less
-
Abstract Ectomycorrhizal (EM) associations can promote the dominance of tree species in otherwise diverse tropical forests. These EM associations between trees and their fungal mutualists have important consequences for soil organic matter cycling, yet the influence of these EM-associated effects on surrounding microbial communities is not well known, particularly in neotropical forests. We examined fungal and prokaryotic community composition in surface soil samples from mixed arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) stands as well as stands dominated by EM-associatedOreomunnea mexicana(Juglandaceae) in four watersheds differing in soil fertility in the Fortuna Forest Reserve, Panama. We hypothesized that EM-dominated stands would support distinct microbial community assemblages relative to the mixed AM-EM stands due to differences in carbon and nitrogen cycling associated with the dominance of EM trees. We expected that this microbiome selection in EM-dominated stands would lead to lower overall microbial community diversity and turnover, with tighter correspondence between general fungal and prokaryotic communities. We measured fungal and prokaryotic community composition via high-throughput Illumina sequencing of theITS2(fungi) and16SrRNA (prokaryotic) gene regions. We analyzed differences in alpha and beta diversity between forest stands associated with different mycorrhizal types, as well as the relative abundance of fungal functional groups and various microbial taxa. We found that fungal and prokaryotic community composition differed based on stand mycorrhizal type. There was lower prokaryotic diversity and lower relative abundance of fungal saprotrophs and pathogens in EM-dominated than AM-EM mixed stands. However, contrary to our prediction, there was lower homogeneity for fungal communities in EM-dominated stands compared to mixed AM-EM stands. Overall, we demonstrate that EM-dominated tropical forest stands have distinct soil microbiomes relative to surrounding diverse forests, suggesting that EM fungi may filter microbial functional groups in ways that could potentially influence plant performance or ecosystem function.more » « less
-
Abstract Efforts to catalog global biodiversity have often focused on aboveground taxonomic diversity, with limited consideration of belowground communities. However, diversity aboveground may influence the diversity of belowground communities and vice versa. In addition to taxonomic diversity, the structural diversity of plant communities may be related to the diversity of soil bacterial and fungal communities, which drive important ecosystem processes but are difficult to characterize across broad spatial scales. In forests, canopy structural diversity may influence soil microorganisms through its effects on ecosystem productivity and root architecture, and via associations between canopy structure, stand age, and species richness. Given that structural diversity is one of the few types of diversity that can be readily measured remotely (e.g., using light detection and ranging—LiDAR), establishing links between structural and microbial diversity could facilitate the detection of belowground biodiversity hotspots. We investigated the potential for using remotely sensed information about forest structural diversity as a predictor of soil microbial community richness and composition. We calculated LiDAR‐derived metrics of structural diversity as well as a suite of stand and soil properties from 38 forested plots across the central hardwoods region of Indiana, USA, to test whether forest canopy structure is linked with the community richness and diversity of four key soil microbial groups: bacteria, fungi, arbuscular mycorrhizal (AM) fungi, and ectomycorrhizal (EM) fungi. We found that the density of canopy vegetation is positively associated with the taxonomic richness (alpha diversity) of EM fungi, independent of changes in plant taxonomic richness. Further, structural diversity metrics were significantly correlated with the overall community composition of bacteria, EM, and total fungal communities. However, soil properties were the strongest predictors of variation in the taxonomic richness and community composition of microbial communities in comparison with structural diversity and tree species diversity. As remote sensing tools and algorithms are rapidly advancing, these results may have important implications for the use of remote sensing of vegetation structural diversity for management and restoration practices aimed at preserving belowground biodiversity.more » « less
An official website of the United States government

