Until recently, solution‐processable organic photovoltaics (OPVs) mainly relied on fullerene derivatives as the
- Award ID(s):
- 1904868
- NSF-PAR ID:
- 10471338
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Dyes and Pigments
- Volume:
- 208
- Issue:
- C
- ISSN:
- 0143-7208
- Page Range / eLocation ID:
- 110858
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract n ‐type material, paired with ap ‐type conjugated polymer. However, fullerene derivatives have disadvantages that limit OPV performance, thus fueling research of non‐fullerene acceptors (NFAs). Initially, NFAs showed poor performance due to difficulties in obtaining favorable blend morphologies. One example is our work with 2,6‐dialkylamino core‐substituted naphthalene diimides. Researchers then learned to control blend morphology by NFA molecular design. To limit miscibility with polymer while preventing excessive self‐aggregation, non‐planar, twisted or 3D structures were reported. An example of a 3D structure is our work with homoleptic zinc(II) complexes of azadipyrromethene. The most recent design is a planar A‐D‐A conjugated system where the D unit is rigid and has orthogonal side chains to control aggregation. These have propelled power conversion efficiencies (PCEs) to ∼14 %, surpassing fullerene‐based OPVs. These exciting new developments prompt further investigations of NFAs and provide a bright future for OPVs. -
Co( ii ) complexes of 1,4,7,10-tetraazacyclododecane (CYCLEN) or 1,4,8,11-tetraazacyclotetradecane (CYCLAM) with 2-hydroxypropyl or carbamoylmethyl (amide) pendants are studied with the goal of developing paramagnetic chemical exchange saturation transfer (paraCEST) agents. Single-crystal X-ray diffraction studies show that two of the coordination cations with hexadentate ligands, [Co(DHP)] 2+ and [Co(BABC)] 2+ , form six-coordinate complexes; whereas two CYCLEN-based complexes with potentially octadentate ligands, [Co(THP)] 2+ and [Co(HPAC)] 2+ , are seven-coordinate with only three of the four pendant groups bound to the metal center. 1 H NMR spectra of these complexes suggest that the six-coordinate complexes are present as a single isomer in aqueous solution. For the complexes which are seven-coordinate in the solid state, one is highly fluxional in aqueous solution on the NMR time scale ([Co(HPAC)] 2+ ), whereas the NMR spectrum of [Co(THP)] 2+ is consistent with an eight-coordinate complex with all pendants bound. Co( ii ) complexes of CYCLEN derivatives show CEST effects of low intensity that are assigned to NH or OH groups of the pendants. One complex, [Co(DHP)] 2+ , shows a highly-shifted CEST peak at 113 ppm versus bulk water, attributed to OH protons. However, the CEST effect is largest for two Co( ii ) CYCLAM-based complexes with coordinated amide groups that undergo NH proton exchange. All five complexes are inert towards dissociation in buffered solutions containing carbonate and phosphate and towards trans-metalation by excess Zn( ii ). These data give insight into the production of an intense CEST effect for tetraazamacrocyclic complexes with pendant groups containing NH or OH exchangeable protons. The intense and highly shifted CEST peak(s) of the CYCLAM-based complexes suggest that they are promising for further development as paraCEST agents.more » « less
-
Abstract The preparation of radicals with intense and redox‐switchable absorption beyond 1000 nm is a long‐standing challenge in the chemistry of functional dyes. Here we report the preparation of a series of unprecedented stable neutral nickel(II) and copper(II) complexes of “Manitoba dipyrromethenes” (MB‐DIPYs) in which the organic chromophore is present in the radical‐anion state. The new stable radicals have an intense absorption at
λ max∼1300 nm and can be either oxidized to regular [MII(MB‐DIPY)]+(M=Cu or Ni) or reduced to [MII(MB‐DIPY)]−compounds. The radical nature of the stable [MII(MB‐DIPY)] complexes was confirmed by EPR spectroscopy with additional insight into their electronic structure obtained by UV‐Vis spectroscopy, electro‐ and spectroelectrochemistry, magnetic measurements, and X‐ray crystallography. The electronic structures and spectroscopic properties of the radical‐based chromophores were also probed by density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations. These nickel(II) and copper(II) complexes represent the first stable radical compounds with a MB‐DIPY ligand. -
Fourteen Ag( i ), Au( i ), Ni( ii ), Pd( ii ), and Pt( ii ) complexes with macrocyclic tetradentate N-heterocyclic carbene (NHC) ligands were prepared via reactions between three macrocyclic tetrabenzimidazolium salts and metal precursors. All except two Au complexes were characterized using single-crystal X-ray diffraction. Three different structures, including a trinuclear one containing a NHC–Ag–(H 2 O) moiety and a hexanuclear propeller-like supramolecular assembly, are found for Ag–NHC complexes. Nine complexes of group 10 metal ions adopt square-planar geometry, in which the different ring-sizes of the macrocyclic tetracarbene ligands lead to a variation of metal–carbene bond lengths. π–π stackings are observed between the rigid aromatic benzimidazole rings in the nickel group complexes.more » « less
-
null (Ed.)Exploiting earth-abundant iron-based metal complexes as high-performance photosensitizers demands long-lived electronically excited metal-to-ligand charge-transfer (MLCT) states, but these species suffer typically from femtosecond timescale charge-transfer (CT)-state quenching by low-lying nonreactive metal-centered (MC) states. Here, we engineer supermolecular Fe(II) chromophores based on the bis(tridentate-ligand)metal(II)-ethyne-(porphinato)zinc(II) conjugated framework, previously shown to give rise to highly delocalized low-lying 3 MLCT states for other Group VIII metal (Ru, Os) complexes. Electronic spectral, potentiometric, and ultrafast pump–probe transient dynamical data demonstrate that a combination of a strong σ-donating tridentate ligand and a (porphinato)zinc(II) moiety with low-lying π*-energy levels, sufficiently destabilize MC states and stabilize supermolecular MLCT states to realize Fe(II) complexes that express 3 MLCT state photophysics reminiscent of their heavy-metal analogs. The resulting Fe(II) chromophore archetype, FeNHCPZn, features a highly polarized CT state having a profoundly extended 3 MLCT lifetime (160 ps), 3 MLCT phosphorescence, and ambient environment stability. Density functional and domain-based local pair natural orbital coupled cluster [DLPNO-CCSD(T)] theory reveal triplet-state wavefunction spatial distributions consistent with electronic spectroscopic and excited-state dynamical data, further underscoring the dramatic Fe metal-to-extended ligand CT character of electronically excited FeNHCPZn. This design further prompts intense panchromatic absorptivity via redistributing high-energy absorptive oscillator strength throughout the visible spectral domain, while maintaining a substantial excited-state oxidation potential for wide-ranging photochemistry––highlighted by the ability of FeNHCPZn to photoinject charges into a SnO 2 /FTO electrode in a dye-sensitized solar cell (DSSC) architecture. Concepts enumerated herein afford opportunities for replacing traditional rare-metal–based emitters for solar-energy conversion and photoluminescence applications.more » « less