skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Signature of collective elastic glass physics in surface-induced long-range tails in dynamical gradients
Understanding the underlying nature of dynamical correlations believed to drive the bulk glass transition is a long-standing problem. Here we show that the form of spatial gradients of the glass transition temperature and structural relaxation time near an interface indeed provide signatures of the nature of relaxation in bulk glass forming liquids. We report results of long-time, large-system molecular dynamics simulations of thick glass-forming polymer films with one vapor interface, supported on a dynamically neutral substrate. We find that gradients in the glass transition temperature and logarithm of the structural relaxation time nucleated at a vapor interface exhibit two distinct regimes: a medium-ranged, large amplitude exponential gradient, followed by a long-range slowly decaying tail that can be described by an inverse power law. This behavior disagrees with multiple proposed theories of glassy dynamics but is predicted by the Elastically Collective Nonlinear Langevin Equation theory as a consequence of two coupled mechanisms: a medium-ranged interface-nucleated gradient of surface modified local caging constraints, and an interfacial truncation of a long-ranged collective elastic field. These findings support a coupled spatially local-nonlocal mechanism of activated glassy relaxation and kinetic vitrification.in both the isotropic bulk and in broken symmetry films.  more » « less
Award ID(s):
1849594
PAR ID:
10471339
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Porfolio
Date Published:
Journal Name:
Nature Physics
Volume:
19
Issue:
6
ISSN:
1745-2473
Page Range / eLocation ID:
800 to 806
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Molecular, polymeric, colloidal, and other classes of liquids can exhibit very large, spatially heterogeneous alterations of their dynamics and glass transition temperature when confined to nanoscale domains. Considerable progress has been made in understanding the related problem of near-interface relaxation and diffusion in thick films. However, the origin of “nanoconfinement effects” on the glassy dynamics of thin films, where gradients from different interfaces interact and genuine collective finite size effects may emerge, remains a longstanding open question. Here, we combine molecular dynamics simulations, probing 5 decades of relaxation, and the Elastically Cooperative Nonlinear Langevin Equation (ECNLE) theory, addressing 14 decades in timescale, to establish a microscopic and mechanistic understanding of the key features of altered dynamics in freestanding films spanning the full range from ultrathin to thick films. Simulations and theory are in qualitative and near-quantitative agreement without use of any adjustable parameters. For films of intermediate thickness, the dynamical behavior is well predicted to leading order using a simple linear superposition of thick-film exponential barrier gradients, including a remarkable suppression and flattening of various dynamical gradients in thin films. However, in sufficiently thin films the superposition approximation breaks down due to the emergence of genuine finite size confinement effects. ECNLE theory extended to treat thin films captures the phenomenology found in simulation, without invocation of any critical-like phenomena, on the basis of interface-nucleated gradients of local caging constraints, combined with interfacial and finite size-induced alterations of the collective elastic component of the structural relaxation process. 
    more » « less
  2. Glass-forming liquids exhibit long-lived, spatially correlated dynamical heterogeneity, in which some nm-scale regions in the fluid relax more slowly than others. In the nanoscale vicinity of an interface, glass-formers also exhibit the emergence of massive interfacial gradients in glass transition temperature Tg and relaxation time τ. Both of these forms of heterogeneity have a major impact on material properties. Nevertheless, their interplay has remained poorly understood. Here, we employ molecular dynamics simulations of polymer thin films in the isoconfigurational ensemble in order to probe how bulk dynamic heterogeneity alters and is altered by the large gradient in dynamics at the surface of a glass-forming liquid. Results indicate that the τ spectrum at the surface is broader than in the bulk despite being shifted to shorter times, and yet it is less spatially correlated. This is distinct from the bulk, where the τ distribution becomes broader and more spatially organized as the mean τ increases. We also find that surface gradients in slow dynamics extend further into the film than those in fast dynamics—a result with implications for how distinct properties are perturbed near an interface. None of these features track locally with changes in the heterogeneity of caging scale, emphasizing the local disconnect between these quantities near interfaces. These results are at odds with conceptions of the surface as reflecting simply a higher “rheological temperature” than the bulk, instead pointing to a complex interplay between bulk dynamic heterogeneity and spatially organized dynamical gradients at interfaces in glass-forming liquids. 
    more » « less
  3. Polymers and other glass-forming liquids can exhibit profound alterations in dynamics in the nanoscale vicinity of interfaces, over a range appreciably exceeding that of typical interfacial thermodynamic gradients. The understanding of these dynamical gradients is particularly complicated in systems with internal or external nanoscale dimensions, where a gradient nucleated at one interface can impinge on a second, potentially distinct, interface. To better understand the interactions that govern system dynamics and glass formation in these cases, here we simulate the baseline case of a glass-forming polymer film, over a wide range of thickness, supported on a dynamically neutral substrate that has little effect on nearby dynamics. We compare these results to our prior simulations of freestanding films. Results indicate that dynamical gradients in our simulated systems, as measured based upon translational relaxation, are simply truncated when they impinge on a secondary surface that is locally dynamically neutral. Altered film behavior can be described almost entirely by gradient effects down to the thinnest films probed, with no evidence for finite-size effects sometimes posited to play a role in these systems. Finally, our simulations predict that linear gradient overlap effects in the presence of symmetric dynamically active interfaces yield a non-monotonic variation of the whole free standing film stretching exponent (relaxation time distribution breadth). The maximum relaxation time distribution breadth in simulation is found at a film thickness of 4–5 times the interfacial gradient range. Observation of this maximum in experiment would provide an important validation that the gradient behavior observed in simulation persists to experimental timescales. If validated, observation of this maximum would potentially also enable determination of the dynamic gradient range from experimental mean-film measurements of film dynamics. 
    more » « less
  4. Debenedetti, P (Ed.)
    Using angle-resolved X-ray photoelectron spectroscopy, sum-frequency generation vibrational spectroscopy, contact angle measurements, and molecular dynamics simulations, we verify that the glass transition temperature (Tg) of polymer glass is lower near the free surface. However, the experimentalTg-gradients showed a linear variation with depth (z) from the free surface, while the simulated equilibriumTg-gradients exhibited a double exponentialz-dependence. In typical simulations,Tgis determined based on the relaxation time of the system reaching a prescribed threshold value at equilibrium. Conversely, the experiments determinedTgby observing the unfreezing of molecular mobility during heating from a kinetically arrested, nonequilibrium glassy state. To investigate the impact of nonequilibrium effects on theTg-gradient, we reduced the thermal annealing time in simulations, allowing the system to fall out of equilibrium. We observe a decrease in the relaxation time and the emergence of a modifiedz-dependence consistent with a linearTg-gradient near the free surface. We further validate the impact of nonequilibrium effects by studying the dependence of theTgon the heating/cooling rate for polymer films of varying thickness (h). Our experimental results reveal significant variations in theTg-heating/cooling rate dependence withhbelow the bulkTg, which are also observed in simulation when the simulated system is not equilibrated. We explain our findings by the reduction in mass density within the inner region of the system under nonequilibrium conditions, as observed in simulation, and recent research indicating a decrease in the localTgof a polymer when placed next to a softer material. 
    more » « less
  5. Glassy films of methyl-m-toluate have been vapor deposited onto a substrate equipped with interdigitated electrodes, facilitating in situ dielectric relaxation measurements during and after deposition. Samples of 200 nm thickness have been deposited at rates of 0.1 nm/s at a variety of deposition temperatures between 40 K and Tg = 170 K. With increasing depth below the surface, the dielectric loss changes gradually from a value reflecting a mobile surface layer to that of the kinetically stable glass. The thickness of this more mobile layer varies from below 1 to beyond 10 nm as the deposition temperature is increased, and its average fictive temperature is near Tg for all deposition temperatures. Judged by the dielectric loss, the liquid-like portion of the surface layer exceeds a thickness of 1 nm only for deposition temperatures above 0.8Tg, where near-equilibrium glassy states are obtained. After deposition, the dielectric loss of the material positioned about 5–30 nm below the surface decreases for thousands of seconds of annealing time, whereas the bulk of the film remains unchanged. 
    more » « less