skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bump Morphology of the CMAGIC Diagram
Abstract We apply the color–magnitude intercept calibration method (CMAGIC) to the Nearby Supernova Factory SNe Ia spectrophotometric data set. The currently existing CMAGIC parameters are the slope and intercept of a straight line fit to the linear region in the color–magnitude diagram, which occurs over a span of approximately 30 days after maximum brightness. We define a new parameter,ωXY, the size of the “bump” feature near maximum brightness for arbitrary filtersXandY. We find a significant correlation between the slope of the linear region,βXY, in the CMAGIC diagram andωXY. These results may be used to our advantage, as they are less affected by extinction than parameters defined as a function of time. Additionally,ωXYis computed independently of templates. We find that current empirical templates are successful at reproducing the features described in this work, particularly SALT3, which correctly exhibits the negative correlation between slope and “bump” size seen in our data. In 1D simulations, we show that the correlation between the size of the “bump” feature andβXYcan be understood as a result of chemical mixing due to large-scale Rayleigh–Taylor instabilities.  more » « less
Award ID(s):
1817099
PAR ID:
10471370
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
948
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study the magneto-optical properties of Fe–Co–Al ordered alloys in the terahertz range of frequencies. Using the standard Kubo-based approach to compute intrinsic part of the σ x y ( ω ) we find a strong dependence ofσxyonωin the terahertz range. For example, we find that below 10 THz Co3Al has nearly constantσxyand that above 10 THz it is reduced by about 50 times. Furthermore, we find a strong dependence ofσxyon the chemical composition. For example, we find that the addition of Al to Fe changes the sign ofσxy, while the addition of Co to Fe leads to a nonmonotonic dependence ofσxyon Co concentration. 
    more » « less
  2. Abstract We present a study on the inference of cosmological and astrophysical parameters using stacked galaxy cluster profiles. Utilizing the CAMELS-zoomGZ simulations, we explore how various cluster properties—such as X-ray surface brightness, gas density, temperature, metallicity, and Compton-y profiles—can be used to predict parameters within the 28-dimensional parameter space of the IllustrisTNG model. Through neural networks, we achieve a high correlation coefficient of 0.97 or above for all cosmological parameters, including Ωm,H0, andσ8, and over 0.90 for the remaining astrophysical parameters, showcasing the effectiveness of these profiles for parameter inference. We investigate the impact of different radial cuts, with bins ranging from 0.1R200cto 0.7R200c, to simulate current observational constraints. Additionally, we perform a noise sensitivity analysis, adding up to 40% Gaussian noise (corresponding to signal-to-noise ratios as low as 2.5), revealing that key parameters such as Ωm,H0, and the initial mass function slope remain robust even under extreme noise conditions. We also compare the performance of full radial profiles against integrated quantities, finding that profiles generally lead to more accurate parameter inferences. Our results demonstrate that stacked galaxy cluster profiles contain crucial information on both astrophysical processes within groups and clusters and the underlying cosmology of the Universe. This underscores their significance for interpreting the complex data expected from next-generation surveys and reveals, for the first time, their potential as a powerful tool for parameter inference. 
    more » « less
  3. Abstract We present deep Hubble Space Telescope photometry of 10 targets from Treasury Program GO-14734, including six confirmed ultrafaint dwarf (UFD) galaxies, three UFD candidates, and one likely globular cluster. Six of these targets are satellites of, or have interacted with, the Large Magellanic Cloud (LMC). We determine their structural parameters using a maximum-likelihood technique. Using our newly derived half-light radius (rh) andV-band magnitude (MV) values in addition to literature values for other UFDs, we find that UFDs associated with the LMC do not show any systematic differences from Milky Way UFDs in the magnitude–size plane. Additionally, we convert simulated UFD properties from the literature into theMV–rhobservational space to examine the abilities of current dark matter (DM) and baryonic simulations to reproduce observed UFDs. Some of these simulations adopt alternative DM models, thus allowing us to also explore whether theMV–rhplane could be used to constrain the nature of DM. We find no differences in the magnitude–size plane between UFDs simulated with cold, warm, and self-interacting DM, but note that the sample of UFDs simulated with alternative DM models is quite limited at present. As more deep, wide-field survey data become available, we will have further opportunities to discover and characterize these ultrafaint stellar systems and the greater low surface-brightness universe. 
    more » « less
  4. Abstract Weak emission-line quasars (WLQs) are a subset of type 1 quasars that exhibit extremely weak Lyα+ Nvλ1240 and/or Civλ1549 emission lines. We investigate the relationship between emission-line properties and accretion rate for a sample of 230 “ordinary” type 1 quasars and 18 WLQs atz< 0.5 and 1.5 <z< 3.5 that have rest-frame ultraviolet and optical spectral measurements. We apply a correction to the Hβ-based black hole mass (MBH) estimates of these quasars using the strength of the optical Feiiemission. We confirm previous findings that WLQs’MBHvalues are overestimated by up to an order of magnitude using the traditional broad-emission-line region size–luminosity relation. With thisMBHcorrection, we find a significant correlation between Hβ-based Eddington luminosity ratios and a combination of the rest-frame Civequivalent width and Civblueshift with respect to the systemic redshift. This correlation holds for both ordinary quasars and WLQs, which suggests that the two-dimensional Civparameter space can serve as an indicator of accretion rate in all type 1 quasars across a wide range of spectral properties. 
    more » « less
  5. Abstract We present the discovery of NGC253-SNFC-dw1, a new satellite galaxy in the remote stellar halo of the Sculptor Group spiral, NGC 253. The system was revealed using deep, resolved star photometry obtained as part of the Subaru Near-Field Cosmology Survey that uses the Hyper Suprime-Cam on the Subaru Telescope. Although rather luminous (MV= −11.7 ± 0.2) and massive (M*∼ 1.25 × 107M), the system is one of the most diffuse satellites yet known, with a half-light radius ofRh= 3.37 ± 0.36 kpc and an average surface brightness of ∼30.1 mag arcmin−2within theRh. The color–magnitude diagram shows a dominant, old (∼10 Gyr), and metal-poor ([M/H] = −1.5 ± 0.1 dex) stellar population, as well as several candidate thermally pulsing asymptotic giant branch stars. The distribution of red giant branch stars is asymmetrical and displays two elongated tidal extensions pointing toward NGC 253, suggestive of a highly disrupted system being observed at apocenter. NGC253-SNFC-dw1 has a size comparable to that of the puzzling Local Group dwarfs Andromeda XIX and Antlia 2 but is 2 magnitudes brighter. While unambiguous evidence of tidal disruption in these systems has not yet been demonstrated, the morphology of NGC253-SNFC-dw1 clearly shows that this is a natural path to produce such diffuse and extended galaxies. The surprising discovery of this system in a previously well-searched region of the sky emphasizes the importance of surface-brightness limiting depth in satellite searches. 
    more » « less