skip to main content


Title: Deep drilling in the time domain with DECam: survey characterization
ABSTRACT

This paper presents a new optical imaging survey of four deep drilling fields (DDFs), two Galactic and two extragalactic, with the Dark Energy Camera (DECam) on the 4-m Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO). During the first year of observations in 2021, >4000 images covering 21 deg2 (seven DECam pointings), with ∼40 epochs (nights) per field and 5 to 6 images per night per filter in g, r, i, and/or z have become publicly available (the proprietary period for this program is waived). We describe the real-time difference-image pipeline and how alerts are distributed to brokers via the same distribution system as the Zwicky Transient Facility (ZTF). In this paper, we focus on the two extragalactic deep fields (COSMOS and ELAIS-S1) characterizing the detected sources, and demonstrating that the survey design is effective for probing the discovery space of faint and fast variable and transient sources. We describe and make publicly available 4413 calibrated light curves based on difference-image detection photometry of transients and variables in the extragalactic fields. We also present preliminary scientific analysis regarding the Solar system small bodies, stellar flares and variables, Galactic anomaly detection, fast-rising transients and variables, supernovae, and active Galactic nuclei.

 
more » « less
Award ID(s):
1817099 2239364
NSF-PAR ID:
10471378
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Monthly Notices of the Royal Astronomical Society
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
519
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
3881 to 3902
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Searches for optical transients are usually performed with a cadence of days to weeks, optimized for supernova discovery. The optical fast transient sky is still largely unexplored, with only a few surveys to date having placed meaningful constraints on the detection of extragalactic transients evolving at sub-hour time-scales. Here, we present the results of deep searches for dim, minute-time-scale extragalactic fast transients using the Dark Energy Camera, a core facility of our all-wavelength and all-messenger Deeper, Wider, Faster programme. We used continuous 20 s exposures to systematically probe time-scales down to 1.17 min at magnitude limits g > 23 (AB), detecting hundreds of transient and variable sources. Nine candidates passed our strict criteria on duration and non-stellarity, all of which could be classified as flare stars based on deep multiband imaging. Searches for fast radio burst and gamma-ray counterparts during simultaneous multifacility observations yielded no counterparts to the optical transients. Also, no long-term variability was detected with pre-imaging and follow-up observations using the SkyMapper optical telescope. We place upper limits for minute-time-scale fast optical transient rates for a range of depths and time-scales. Finally, we demonstrate that optical g-band light-curve behaviour alone cannot discriminate between confirmed extragalactic fast transients such as prompt GRB flashes and Galactic stellar flares.

     
    more » « less
  2. ABSTRACT

    We present the results of a radio transient and polarization survey towards the Galactic Centre, conducted as part of the Australian Square Kilometre Array Pathfinder Variables and Slow Transients pilot survey. The survey region consisted of five fields covering $\sim 265\, {\rm deg}^2$ (350○ ≲ l ≲ 10○, |b| ≲ 10○). Each field was observed for 12 min, with between 7 and 9 repeats on cadences of between one day and four months. We detected eight highly variable sources and seven highly circularly polarized sources (14 unique sources in total). Seven of these sources are known pulsars including the rotating radio transient PSR J1739–2521 and the eclipsing pulsar PSR J1723–2837. One of them is a low-mass X-ray binary, 4U 1758–25. Three of them are coincident with optical or infrared sources and are likely to be stars. The remaining three may be related to the class of Galactic Centre Radio Transients (including a highly likely one, VAST J173608.2–321634, that has been reported previously), although this class is not yet understood. In the coming years, we expect to detect ∼40 bursts from this kind of source with the proposed 4-yr VAST survey if the distribution of the source is isotropic over the Galactic fields.

     
    more » « less
  3. Abstract The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to $\sim\!5$ yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $\sim\!162$ h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of $0.24\ \mathrm{mJy\ beam}^{-1}$ and angular resolution of $12-20$ arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified. 
    more » « less
  4. ABSTRACT

    We apply a new deep learning technique to detect, classify, and deblend sources in multiband astronomical images. We train and evaluate the performance of an artificial neural network built on the Mask Region-based Convolutional Neural Network image processing framework, a general code for efficient object detection, classification, and instance segmentation. After evaluating the performance of our network against simulated ground truth images for star and galaxy classes, we find a precision of 92 per cent at 80 per cent recall for stars and a precision of 98 per cent at 80 per cent recall for galaxies in a typical field with ∼30 galaxies arcmin−2. We investigate the deblending capability of our code, and find that clean deblends are handled robustly during object masking, even for significantly blended sources. This technique, or extensions using similar network architectures, may be applied to current and future deep imaging surveys such as Large Synoptic Survey Telescope and Wide-Field Infrared Survey Telescope. Our code, astro r-cnn, is publicly available at https://github.com/burke86/astro_rcnn.

     
    more » « less
  5. ABSTRACT

    Rapid identification of the optical counterparts of neutron star (NS) merger events discovered by gravitational wave detectors may require observing a large error region and sifting through a large number of transients to identify the object of interest. Given the expense of spectroscopic observations, a question arises: How can we utilize photometric observations for candidate prioritization, and what kinds of photometric observations are needed to achieve this goal? NS merger kilonova exhibits low ejecta mass (∼5 × 10−2 M⊙) and a rapidly evolving photospheric radius (with a velocity ∼0.2c). As a consequence, these sources display rapid optical-flux evolution. Indeed, selection based on fast flux variations is commonly used for young supernovae and NS mergers. In this study, we leverage the best currently available flux-limited transient survey – the Zwicky Transient Facility Bright Transient Survey – to extend and quantify this approach. We focus on selecting transients detected in a 3-day cadence survey and observed at a one-day cadence. We explore their distribution in the phase space defined by g–r, $\dot{g}$, and $\dot{r}$. Our analysis demonstrates that for a significant portion of the time during the first week, the kilonova AT 2017gfo stands out in this phase space. It is important to note that this investigation is subject to various biases and challenges; nevertheless, it suggests that certain photometric observations can be leveraged to identify transients with the highest probability of being fast-evolving events. We also find that a large fraction (≈75 per cent) of the transient candidates with $\vert\dot{g}\vert>0.7$ mag d−1, are cataclysmic variables or active galactic nuclei with radio counterparts.

     
    more » « less