Abstract Photometric classifications of supernova (SN) light curves have become necessary to utilize the full potential of large samples of observations obtained from wide-field photometric surveys, such as the Zwicky Transient Facility (ZTF) and the Vera C. Rubin Observatory. Here, we present a photometric classifier for SN light curves that does not rely on redshift information and still maintains comparable accuracy to redshift-dependent classifiers. Our new package, Superphot+, uses a parametric model to extract meaningful features from multiband SN light curves. We train a gradient-boosted machine with fit parameters from 6061 ZTF SNe that pass data quality cuts and are spectroscopically classified as one of five classes: SN Ia, SN II, SN Ib/c, SN IIn, and SLSN-I. Without redshift information, our classifier yields a class-averagedF1-score of 0.61 ± 0.02 and a total accuracy of 0.83 ± 0.01. Including redshift information improves these metrics to 0.71 ± 0.02 and 0.88 ± 0.01, respectively. We assign new class probabilities to 3558 ZTF transients that show SN-like characteristics (based on the ALeRCE Broker light-curve and stamp classifiers) but lack spectroscopic classifications. Finally, we compare our predicted SN labels with those generated by the ALeRCE light-curve classifier, finding that the two classifiers agree on photometric labels for 82% ± 2% of light curves with spectroscopic labels and 72% ± 0% of light curves without spectroscopic labels. Superphot+ is currently classifying ZTF SNe in real time via the ANTARES Broker, and is designed for simple adaptation to six-band Rubin light curves in the future.
more »
« less
Persistent and occasional: Searching for the variable population of the ZTF/4MOST sky using ZTF Data Release 11
Aims. We present a variability-, color-, and morphology-based classifier designed to identify multiple classes of transients and persistently variable and non-variable sources from the Zwicky Transient Facility (ZTF) Data Release 11 (DR11) light curves of extended and point sources. The main motivation to develop this model was to identify active galactic nuclei (AGN) at different redshift ranges to be observed by the 4MOST Chilean AGN/Galaxy Evolution Survey (ChANGES). That being said, it also serves as a more general time-domain astronomy study. Methods. The model uses nine colors computed from CatWISE and Pan-STARRS1 (PS1), a morphology score from PS1, and 61 single-band variability features computed from the ZTF DR11 g and r light curves. We trained two versions of the model, one for each ZTF band, since ZTF DR11 treats the light curves observed in a particular combination of field, filter, and charge-coupled device (CCD) quadrant independently. We used a hierarchical local classifier per parent node approach-where each node is composed of a balanced random forest model. We adopted a taxonomy with 17 classes: non-variable stars, non-variable galaxies, three transients (SNIa, SN-other, and CV/Nova), five classes of stochastic variables (lowz-AGN, midz-AGN, highz-AGN, Blazar, and YSO), and seven classes of periodic variables (LPV, EA, EB/EW, DSCT, RRL, CEP, and Periodic-other). Results. The macro-averaged precision, recall, and F1-score are 0.61, 0.75, and 0.62 for the g -band model, and 0.60, 0.74, and 0.61, for the r -band model. When grouping the four AGN classes (lowz-AGN, midz-AGN, highz-AGN, and Blazar) into one single class, its precision-recall, and F1-score are 1.00, 0.95, and 0.97, respectively, for both the g and r bands. This demonstrates the good performance of the model in classifying AGN candidates. We applied the model to all the sources in the ZTF/4MOST overlapping sky (−28 ≤ Dec ≤ 8.5), avoiding ZTF fields that cover the Galactic bulge (| gal_b | ≤ 9 and gal_l ≤ 50). This area includes 86 576 577 light curves in the g band and 140 409 824 in the r band with 20 or more observations and with an average magnitude in the corresponding band lower than 20.5. Only 0.73% of the g -band light curves and 2.62% of the r -band light curves were classified as stochastic, periodic, or transient with high probability ( P init ≥ 0.9). Even though the metrics obtained for the two models are similar, we find that, in general, more reliable results are obtained when using the g -band model. With it, we identified 384 242 AGN candidates (including low-, mid-, and high-redshift AGN and Blazars), 287 156 of which have P init ≥ 0.9.
more »
« less
- Award ID(s):
- 1909101
- PAR ID:
- 10440635
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 675
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A195
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The classification of variable objects provides insight into a wide variety of astrophysics ranging from stellar interiors to galactic nuclei. The Zwicky Transient Facility (ZTF) provides time-series observations that record the variability of more than a billion sources. The scale of these data necessitates automated approaches to make a thorough analysis. Building on previous work, this paper reports the results of the ZTF Source Classification Project (SCoPe), which trains neural network and XGBoost (XGB) machine-learning (ML) algorithms to perform dichotomous classification of variable ZTF sources using a manually constructed training set containing 170,632 light curves. We find that several classifiers achieve high precision and recall scores, suggesting the reliability of their predictions for 209,991,147 light curves across 77 ZTF fields. We also identify the most important features for XGB classification and compare the performance of the two ML algorithms, finding a pattern of higher precision among XGB classifiers. The resulting classification catalog is available to the public, and the software developed forSCoPeis open source and adaptable to future time-domain surveys.more » « less
-
Abstract Using the second data release from the Zwicky Transient Facility (ZTF), Chen et al. created a ZTF Catalog of Periodic Variable Stars (ZTF CPVS) of 781,602 periodic variables stars (PVSs) with 11 class labels. Here, we provide a new classification model of PVSs in the ZTF CPVS using a convolutional variational autoencoder and hierarchical random forest. We cross-match the sky-coordinate of PVSs in the ZTF CPVS with those presented in the SIMBAD catalog. We identify non-stellar objects that are not previously classified, including extragalactic objects such as Quasi-Stellar Objects, Active Galactic Nuclei, supernovae and planetary nebulae. We then create a new labeled training set with 13 classes in two levels. We obtain a reasonable level of completeness (≳90%) for certain classes of PVSs, although we have poorer completeness in other classes (∼40% in some cases). Our new labels for the ZTF CPVS are available via Zenodo.more » « less
-
ABSTRACT The All-Sky Automated Survey for Supernovae (ASAS-SN) is the first optical survey to monitor the entire sky, currently with a cadence of ≲ 24 h down to g ≲ 18.5 mag. ASAS-SN has routinely operated since 2013, collecting ∼ 2 000 to over 7 500 epochs of V- and g-band observations per field to date. This work illustrates the first analysis of ASAS-SN’s newer, deeper, and higher cadence g-band data. From an input source list of ∼55 million isolated sources with g < 18 mag, we identified 1.5 × 106 variable star candidates using a random forest (RF) classifier trained on features derived from Gaia, 2MASS, and AllWISE. Using ASAS-SN g-band light curves, and an updated RF classifier augmented with data from Citizen ASAS-SN, we classified the candidate variables into eight broad variability types. We present a catalogue of ∼116 000 new variable stars with high-classification probabilities, including ∼111 000 periodic variables and ∼5 000 irregular variables. We also recovered ∼263 000 known variable stars.more » « less
-
ABSTRACT We present a sample of 706, z < 1.5 active galactic nuclei (AGNs) selected from optical photometric variability in three of the Dark Energy Survey (DES) deep fields (E2, C3, and X3) over an area of 4.64 deg2. We construct light curves using difference imaging aperture photometry for resolved sources and non-difference imaging PSF photometry for unresolved sources, respectively, and characterize the variability significance. Our DES light curves have a mean cadence of 7 d, a 6-yr baseline, and a single-epoch imaging depth of up to g ∼ 24.5. Using spectral energy distribution (SED) fitting, we find 26 out of total 706 variable galaxies are consistent with dwarf galaxies with a reliable stellar mass estimate ($$M_{\ast }\lt 10^{9.5}\, {\rm M}_\odot$$; median photometric redshift of 0.9). We were able to constrain rapid characteristic variability time-scales (∼ weeks) using the DES light curves in 15 dwarf AGN candidates (a subset of our variable AGN candidates) at a median photometric redshift of 0.4. This rapid variability is consistent with their low black hole (BH) masses. We confirm the low-mass AGN nature of one source with a high S/N optical spectrum. We publish our catalogue, optical light curves, and supplementary data, such as X-ray properties and optical spectra, when available. We measure a variable AGN fraction versus stellar mass and compare to results from a forward model. This work demonstrates the feasibility of optical variability to identify AGNs with lower BH masses in deep fields, which may be more ‘pristine’ analogues of supermassive BH seeds.more » « less