skip to main content


Title: PRShare: A Framework for Privacy-preserving, Interorganizational Data Sharing

We consider the task of interorganizational data sharing, in which data owners, data clients, and data subjects have different and sometimes competing privacy concerns. One real-world scenario in which this problem arises concerns law-enforcement use of phone-call metadata: The data owner is a phone company, the data clients are law-enforcement agencies, and the data subjects are individuals who make phone calls. A key challenge in this type of scenario is that each organization uses its own set of proprietary intraorganizational attributes to describe the shared data; such attributes cannot be shared with other organizations. Moreover, data-access policies are determined by multiple parties and may be specified using attributes that are not directly comparable with the ones used by the owner to specify the data.

We propose a system architecture and a suite of protocols that facilitate dynamic and efficient interorganizational data sharing, while allowing each party to use its own set of proprietary attributes to describe the shared data and preserving the confidentiality of both data records and proprietary intraorganizational attributes. We introduce the novel technique ofAttribute-Based Encryption with Oblivious Attribute Translation (OTABE), which plays a crucial role in our solution. This extension of attribute-based encryption uses semi-trusted proxies to enable dynamic and oblivious translation between proprietary attributes that belong to different organizations; it supports hidden access policies, direct revocation, and fine-grained, data-centric keys and queries. We prove that our OTABE-based framework is secure in the standard model and provide two real-world use cases.

 
more » « less
Award ID(s):
2131541
NSF-PAR ID:
10471386
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Privacy and Security
Volume:
25
Issue:
4
ISSN:
2471-2566
Page Range / eLocation ID:
1 to 38
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In today's mobile-first, cloud-enabled world, where simulation-enabled training is designed for use anywhere and from multiple different types of devices, new paradigms are needed to control access to sensitive data. Large, distributed data sets sourced from a wide-variety of sensors require advanced approaches to authorizations and access control (AC). Motivated by large-scale, publicized data breaches and data privacy laws, data protection policies and fine-grained AC mechanisms are an imperative in data intensive simulation systems. Although the public may suffer security incident fatigue, there are significant impacts to corporations and government organizations in the form of settlement fees and senior executive dismissal. This paper presents an analysis of the challenges to controlling access to big data sets. Implementation guidelines are provided based upon new attribute-based access control (ABAC) standards. Best practices start with AC for the security of large data sets processed by models and simulations (M&S). Currently widely supported eXtensible Access Control Markup Language (XACML) is the predominant framework for big data ABAC. The more recently developed Next Generation Access Control (NGAC) standard addresses additional areas in securing distributed, multi-owner big data sets. We present a comparison and evaluation of standards and technologies for different simulation data protection requirements. A concrete example is included to illustrate the differences. The example scenario is based upon synthetically generated very sensitive health care data combined with less sensitive data. This model data set is accessed by representative groups with a range of trust from highly-trusted roles to general users. The AC security challenges and approaches to mitigate risk are discussed. 
    more » « less
  2. Attribute-based encryption (ABE) generalizes public-key encryption and enables fine-grained control to encrypted data. However, ABE upends the traditional trust model of public-key encryption by requiring a single trusted authority to issue decryption keys. If an adversary compromises the central authority and exfiltrates its secret key, then the adversary can decrypt every ciphertext in the system. This work introduces registered ABE, a primitive that allows users to generate secret keys on their own and then register the associated public key with a “key curator” along with their attributes. The key curator aggregates the public keys from the different users into a single compact master public key. To decrypt, users occasionally need to obtain helper decryption keys from the key curator which they combine with their own secret keys. We require that the size of the aggregated public key, the helper decryption keys, the ciphertexts, as well as the encryption/decryption times to be polylogarithmic in the number of registered users. Moreover, the key curator is entirely transparent and maintains no secrets. Registered ABE generalizes the notion of registration-based encryption (RBE) introduced by Garg et al. (TCC 2018), who focused on the simpler setting of identity-based encryption. We construct a registered ABE scheme that supports an a priori bounded number of users and policies that can be described by a linear secret sharing scheme (e.g., monotone Boolean formulas) from assumptions on composite-order pairing groups. Our approach deviates sharply from previous techniques for constructing RBE and only makes black-box use of cryptography. All existing RBE constructions (a weaker notion than registered ABE) rely on heavy non-black-box techniques. The encryption and decryption costs of our construction are comparable to those of vanilla pairing-based ABE. Two limitations of our scheme are that it requires a structured reference string whose size scales quadratically with the number of users (and linearly with the size of the attribute universe) and the running time of registration scales linearly with the number of users. Finally, as a feasibility result, we construct a registered ABE scheme that supports general policies and an arbitrary number of users from indistinguishability obfuscation and somewhere statistically binding hash functions. 
    more » « less
  3. Software applications that employ secure multi-party computation (MPC) can empower individuals and organizations to benefit from privacy-preserving data analyses when data sharing is encumbered by confidentiality concerns, legal constraints, or corporate policies. MPC is already being incorporated into software solutions in some domains; however, individual use cases do not fully convey the variety, extent, and complexity of the opportunities of MPC. This position paper articulates a role-based perspective that can provide some insight into how future research directions, infrastructure development and evaluation approaches, and deployment practices for MPC may evolve. Drawing on our own lessons from existing real-world deployments and the fundamental characteristics of MPC that make it a compelling technology, we propose a role-based conceptual framework for describing MPC deployment scenarios. Our framework acknowledges and leverages a novel assortment of roles that emerge from the fundamental ways in which MPC protocols support federation of functionalities and responsibilities. Defining these roles using the new opportunities for federation that MPC enables in turn can help identify and organize the capabilities, concerns, incentives, and trade-offs that affect the entities (software engineers, government regulators, corporate executives, end-users, and others) that participate in an MPC deployment scenario. This framework can not only guide the development of an ecosystem of modular and composable MPC tools, but can make explicit some of the opportunities that researchers and software engineers (and any organizations they form) have to differentiate and specialize the artifacts and services they choose to design, develop, and deploy. We demonstrate how this framework can be used to describe existing MPC deployment scenarios, how new opportunities in a scenario can be observed by disentangling roles inhabited by the involved parties, and how this can motivate the development of MPC libraries and software tools that specialize not by application domain but by role. 
    more » « less
  4. Enterprises, including military, law enforcement, medical, financial, and commercial organizations, must often share large quantities of data, some potentially sensitive, with many other enterprises. A key issue, the mechanics of data sharing, involves how to precisely and unambiguously specify which data to share with which partner or group of partners. This issue can be addressed through a system of formal data sharing policy definitions and automated enforcement. Several challenges arise when specifying enterprise-level data sharing policies. A first challenge involves the scale and complexity of data types to be shared. An easily understood method is required to represent and visualize an enterprise’s data types and their relationships so that users can quickly, easily, and precisely specify which data types and relationships to share. A second challenge involves the scale and complexity of data sharing partners. Enterprises typically have many partners involved in different projects, and there are often complex hierarchies among groups of partners that must be considered and navigated to specify which partners or groups of partners to include in a data sharing policy. A third challenge is that defining policies formally, given the first two challenges of scale and complexity, requires complex, precise language, but these languages are difficult to use by non-specialists. More useable methods of policy specification are needed. Our approach was to develop a software wizard that walks users through a series of steps for defining a data sharing policy. A combination of innovative and well known methods is used to address these challenges of scale, complexity, and usability. 
    more » « less
  5. Information-centric networking (ICN) replaces the widely used host-centric networking paradigm in communication networks (e.g., Internet and mobile ad hoc networks) with an information-centric paradigm, which prioritizes the delivery of named content, oblivious of the contents' origin. Content and client security, provenance, and identity privacy are intrinsic by design in the ICN paradigm as opposed to the current host centric paradigm where they have been instrumented as an afterthought. However, given its nascency, the ICN paradigm has several open security and privacy concerns. In this paper, we survey the existing literature in security and privacy in ICN and present open questions. More specifically, we explore three broad areas: 1) security threats; 2) privacy risks; and 3) access control enforcement mechanisms. We present the underlying principle of the existing works, discuss the drawbacks of the proposed approaches, and explore potential future research directions. In security, we review attack scenarios, such as denial of service, cache pollution, and content poisoning. In privacy, we discuss user privacy and anonymity, name and signature privacy, and content privacy. ICN's feature of ubiquitous caching introduces a major challenge for access control enforcement that requires special attention. We review existing access control mechanisms including encryption-based, attribute-based, session-based, and proxy re-encryption-based access control schemes. We conclude the survey with lessons learned and scope for future work. 
    more » « less