Selective Catalytic Reduction (SCR) operation depends strongly on both heat and ammonia availability (stored or incoming). These requirements make high efficiency SCR challenging in lower temperature cycles where SCR is relatively cold, and Diesel Exhaust Fluid (DEF) injection is largely absent due to deposit risks. Examples include low temperature cycles such as low-idling, stop-and-go or low-load cycles such as city driving or local delivery cycles. An Electrically Heated Mixer/ EHM™ is utilized to address these challenges in a single component. EHM simultaneously provides heat for rapid SCR heat-up during the cold phase or in other low-temperature operations, steady or transient. Second, its heating mechanism makes deposit risks nearly non-existent. Third, EHM enables DEF injection at 130 °C, markedly enhancing the low temperature SCR impact. It is shown that these capabilities collectively make EHM a promising pathway for meeting ultra-stringent NOx targets including California 2027 (0.02 gr/hp.hr). Via rapidly heating the SCR catalyst during cold-start, EHM enables substantially lowering the cold-phase NOx. For instance, it is shown this lowers the cold FTP and cold WHTC NOx emission by 2 – 2.5 fold and in Low-Load Cycle by 22-fold. EHM also allows DEF injection in low exhaust temperatures such as in 70 - 80 °C, for instance for rapidly filling the SCR catalyst with ammonia, if needed. Unlike adding other exhaust flow heating devices where an additional component is ultimately integrated in the aftertreatment architecture, EHM is a mixer, already present in emission control systems. These flexibilities, along with its lower cost and ease in fitting, make EHM an enabling pathway for Diesel emission control systems meeting very low NOx regulations.
more »
« less
A New Electrically Heated Mixer (EHM) for Efficient SCR of NOx in Low Load Cycles
Selective Catalytic Reduction (SCR) operation depends strongly on both heat and ammonia availability (stored or incoming). These requirements make high efficiency SCR challenging in lower temperature cycles where SCR is relatively cold, and Diesel Exhaust Fluid (DEF) injection is largely absent due to deposit risks. Examples include low temperature cycles such as low-idling, stop-and-go or low-load cycles such as city driving or local delivery cycles. An Electrically Heated Mixer/ EHM™ is utilized to address these challenges in a single component. EHM simultaneously provides heat for rapid SCR heat-up during the cold phase or in other low-temperature operations, steady or transient. Second, its heating mechanism makes deposit risks nearly non-existent. Third, EHM enables DEF injection at 130 °C, markedly enhancing the low temperature SCR impact. It is shown that these capabilities collectively make EHM a promising pathway for meeting ultra-stringent NOx targets including California 2027 (0.02 gr/hp.hr). Via rapidly heating the SCR catalyst during cold-start, EHM enables substantially lowering the cold-phase NOx. For instance, it is shown this lowers the cold FTP and cold WHTC NOx emission by 2 – 2.5 fold and in Low-Load Cycle by 22-fold. EHM also allows DEF injection in low exhaust temperatures such as in 70 - 80 °C, for instance for rapidly filling the SCR catalyst with ammonia, if needed. Unlike adding other exhaust flow heating devices where an additional component is ultimately integrated in the aftertreatment architecture, EHM is a mixer, already present in emission control systems. These flexibilities, along with its lower cost and ease in fitting, make EHM an enabling pathway for Diesel emission control systems meeting very low NOx regulations.
more »
« less
- Award ID(s):
- 1831231
- PAR ID:
- 10471426
- Publisher / Repository:
- Society of Automotive Engineers
- Date Published:
- Journal Name:
- SAE technical paper series
- Edition / Version:
- 2023-01-0356
- ISSN:
- 0148-7191
- Subject(s) / Keyword(s):
- Electrically Heated Mixer, NOx, Selective Catalytic Reduction, Diesel NOx, Urea, Ammonia NH3
- Format(s):
- Medium: X
- Location:
- Warren, PA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Freund, H.J. and (Ed.)An electrically heated mixer (EHM™) has been developed. It enables injecting urea-water solution in low temperature Diesel exhaust operations, such as in low-load cycles, real-driving-emissions (RDE), stop-and-go, city driving and local delivery cycles, enabling high efficiency (SCR) selective catalytic reduction of NOx in challenging operations. In low temperature exhaust, EHM frees the injected droplets from relying on the heat of the exhaust. It provides thermal energy to swiftly heat and evaporate the droplets, accelerating their thermolysis and hydrolysis reactions. Designed to be compact, low cost and robust, EHM forms plenty of reductants (ammonia, isocyanic acid) while mitigating the deposit risks. It has been tested on an engine in highly transient, low-load cycles exhibiting robust SCR of NOx well below 200 °C in long cycles with urea injection starting in as low as 130 °C. The mixer has been evaluated on a light duty Diesel engine using a purged (no-ammonia-stored) SCR catalyst simulating extended stop-and-go operations, demonstrating 99–100% NOx reduction efficiency during “stops” (idling) at 180 °C, and 80 to 95% during fast transients at 160 °C, while inhibiting deposit formation. These results were achieved without any engine or system calibration. EHM needs less than 200 W to operate on a light duty Diesel engine, and about 500 W on a heavy-duty engine. Given its thermal energy, it can be also used during cold-starts or cold-cycles for rapidheatup of the SCR catalyst(s). EHM can also enable high engine-out NOx strategy so for fuel economy and reduced CO2.more » « less
-
N/A (Ed.)Low temperature Diesel exhaust operations such as during low-load cycles are some of the most difficult conditions for SCR of NOx. This, along with newer regulations targeting substantial reduction of the tailpipe NOx such as California-2024/2027 NOx regulations, adds to challenges of high efficiency SCR of NOx in low temperature operations. A novel design, low-cost, low-energy Electrically Heated Mixer (EHM™), energized via the 12, 24 or 48 V vehicle electrical system, is used to accelerate formation of reductants (ammonia, isocyanic acid) in low temperature exhaust (low load cycles), so to enable high efficiency SCR of NOx in most challenging SCR conditions, while also mitigating urea deposit formation. EHM™ is also used to heat the cooler exhaust flow during engine cold-start. It easily fits common exhaust configurations and can be utilized on light, medium or heavy duty Diesel aftertreatment systems, on- or non-road or in stationary systems.more » « less
-
This research analyzed the real-world NOx and particle number (PN) emissions of 21 China VI heavy-duty diesel trucks (HDDTs). On-road emission conformity was first evaluated with portable emission measurement system (PEMS). Only 76.19 %, 71.43 % and 61.90 % of the vehicles passed the NOx test, PN test and both tests, respectively. The impacts of vehicle features including exhaust gas recirculation (EGR) equipment, mileage and tractive tonnage were then assessed. Results demonstrated that EGR helped reducing NOx emission factors (EFs) while increased PN EFs. Larger mileages and tractive tonnages corresponded to higher NOx and PN EFs, respectively. In-depth analyses regarding the influences of operating conditions on emissions were conducted with both numerical comparisons and statistical tests. Results proved that HDDTs generated higher NOx EFs under low speeds or large vehicle specific powers (VSPs), and higher PN EFs under high speeds or small VSPs in general. In addition, unqualified vehicles generated significantly higher NOx EFs than qualified vehicles on freeways or under speed≥40 km/h, while significant higher PN EFs were generated on suburban roads, freeways or under operating modes with positive VSPs by unqualified vehicles. The reliability and accuracy of on-board diagnostic (OBD) NOx data were finally investigated. Results revealed that 43 % of the test vehicles did not report reliable OBD data. Correlation analyses between OBD NOx and PEMS measurements further demonstrated that the consistency of instantaneous concentrations were generally low. However, sliding window averaged concentrations show better correlations, e.g., the Pearson correlation coefficients on 20s-window averaged concentrations exceeded 0.85 for most vehicles. The research results provide valuable insights into emission regulation, e.g., focusing more on medium- to high-speed operations to identify unqualified vehicles, setting higher standards to improve the quality of OBD data, and adopting window averaged OBD NOx concentrations in evaluating vehicle emission performance.more » « less
-
ASME ICEF (Ed.)fuel blend consisting of 10% S8 by mass (a Fischer-Tropsch synthetic kerosene), and 90% ULSD (Ultra Low Sulfur Diesel) was investigated for their combustion characteristics and impact on emissions during RCCI (Reactivity Controlled Compression Ignition) combustion in a single cylinder experimental engine utilizing a 65% by mass n-butanol port fuel injection (PFI). RCCI is a dual fuel combustion strategy achieved with the introduction of a PFI fuel of the low-reactive n-butanol, and a direct injection (DI) of a high-reactivity blend (FT-BLEND) into an experimental diesel engine. The combustion analysis and emissions testing were conducted at 1500 RPM at an engine load of 5 bar IMEP (Indicated Mean Effective Pressure), and CA50 of 9° ATDC (After Top Dead Center); CDC (Conventional Diesel Combustion) and RCCI with 65Bu-35ULSD were utilized as the baseline for AHRR (Apparent Heat Release Rate), ringing and emissions comparisons. It was found during a preliminary investigation with a Constant Volume Combustion Chamber (CVCC) that the introduction of 10% by mass S8 into a mixture with 90% ULSD by mass only increased Derived Cetane Number (DCN) by 0.8, yet it was found to have a significant effect on the combustion characteristics of the fuel blend. This led to the change in injection timing necessary for maintaining 65Bu-35F-T BLEND RCCI at a CA50 of 5° ATDC (After Top Dead Center) to be shifted 3° closer to TDC, thus affecting the Ringing Intensity (RI), Pressure Rise Rate, and heat release of the blend all to decrease. CDC was conducted with a primary injection of 14ᵒ BTDC at a rail pressure of 800 bar, all RCCI testing was conducted with 65% PFI of n-butanol by mass and 35% DI, to prevent knock, with a rail pressure of 600 bar and a pilot injection of 60° BTDC for 0.35 ms. 65Bu-35ULSD RCCI was conducted with a primary injection at 6° BTDC with neat ULSD#2, the fuel 65Bu-35F-T BLEND in RCCI had a primary injection at 3° BTDC to maintain CA50 at 9° ATDC. 65Bu-35ULSD RCCI experienced a NOX and soot emissions decrease of 40.8% and 91.44% respectively in comparison to CDC. The fuel 65Bu-35F-T BLEND in RCCI exhibited an additional decrease of NOX and soot of 32.9 and 5.3%, in comparison to 65Bu-35ULSD RCCI for an overall decrease in emissions of 73.7% and 96.71% respectively. Ringing Intensity followed a similar trend with reductions in RI for 65Bu-35ULSD RCCI decreasing only by 6.2% whereas 65Bu-35F-T BLEND had a decrease in RI of 76.6%. Although emissions for both RCCI fuels experienced a decrease in NOX and soot in comparison to CDC, UHC and CO did increase as a result of RCCI. CO emissions for 65Bu-35ULSD RCCI and 65Bu-35F-T BLEND where increased from CDC by a factor of 5 and 4 respectively with UHC emissions rising from CDC by a factor of 3.4. The fuel 65Bu-35F-T BLEND had a higher combustion efficiency than 65Bu-35ULSD in RCCI at 91.2% due to lower CO emissions of the blend.more » « less
An official website of the United States government

