skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On-road evaluation and regulatory recommendations for NOx and particle number emissions of China VI heavy-duty diesel trucks: A case study in Shenzhen
This research analyzed the real-world NOx and particle number (PN) emissions of 21 China VI heavy-duty diesel trucks (HDDTs). On-road emission conformity was first evaluated with portable emission measurement system (PEMS). Only 76.19 %, 71.43 % and 61.90 % of the vehicles passed the NOx test, PN test and both tests, respectively. The impacts of vehicle features including exhaust gas recirculation (EGR) equipment, mileage and tractive tonnage were then assessed. Results demonstrated that EGR helped reducing NOx emission factors (EFs) while increased PN EFs. Larger mileages and tractive tonnages corresponded to higher NOx and PN EFs, respectively. In-depth analyses regarding the influences of operating conditions on emissions were conducted with both numerical comparisons and statistical tests. Results proved that HDDTs generated higher NOx EFs under low speeds or large vehicle specific powers (VSPs), and higher PN EFs under high speeds or small VSPs in general. In addition, unqualified vehicles generated significantly higher NOx EFs than qualified vehicles on freeways or under speed≥40 km/h, while significant higher PN EFs were generated on suburban roads, freeways or under operating modes with positive VSPs by unqualified vehicles. The reliability and accuracy of on-board diagnostic (OBD) NOx data were finally investigated. Results revealed that 43 % of the test vehicles did not report reliable OBD data. Correlation analyses between OBD NOx and PEMS measurements further demonstrated that the consistency of instantaneous concentrations were generally low. However, sliding window averaged concentrations show better correlations, e.g., the Pearson correlation coefficients on 20s-window averaged concentrations exceeded 0.85 for most vehicles. The research results provide valuable insights into emission regulation, e.g., focusing more on medium- to high-speed operations to identify unqualified vehicles, setting higher standards to improve the quality of OBD data, and adopting window averaged OBD NOx concentrations in evaluating vehicle emission performance.  more » « less
Award ID(s):
2152258
PAR ID:
10510632
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Science of The Total Environment
Volume:
928
Issue:
C
ISSN:
0048-9697
Page Range / eLocation ID:
172427
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Speed planning in a vehicle-following scenario can reduce vehicle fuel consumption even under limited traffic preview and in moderate penetration of connected autonomous vehicles (CAVs), but could also lead to colder exhaust temperature, and consequently, less efficient aftertreatment conversion. To investigate this potential trade-off, this paper presents a model predictive controller (MPC) to optimally plan in an energy-conscious way the optimal speed trajectory for a diesel car following a hypothetical lead vehicle that drives through the velocity trace of a federal test procedure. Using this energy-conscious optimal speed plan we investigate different horizons for three objective functions, including minimum acceleration, minimum fuel consumption and minimum power. Then, MPC results are compared to the trajectories obtained by dynamic programming with full knowledge of the drive cycle. As expected, longer previews lead to smoother velocity trajectories that reduce the fuel consumption by 11% when power is the objective function, if the preview is accurate. When the minimum fuel is set as the objective in the MPC, the controller coordinates to operate the engine at more efficient conditions, which increases the fuel saving to 25%. However, the extra fuel saving is shown to be achieved at the expense of high vehicle NOx emissions, since the engine operates at low speeds and high loads, where the output NOx emissions are high, when the aftertreatment catalyst is not hot enough. Finally, it is shown that the minimum power formulation leads to a better trade-off, where fuel economy can be increased without a large penalty on NOx emissions. 
    more » « less
  2. In an effort to reduce nitrogen oxide (NOx) emissions and other pollutants from heavy-duty vehicles (HDVs), regulators have been implementing more stringent regulations that have included a combination of significantly more stringent emissions standards with the introduction of battery electric vehicles (BEVs). This study analyzed in-use NOx emissions data from 63 HDVs across various vocations, model years, and engine technologies/fuels to assess which current technologies offer a realistic path toward reducing NOx emissions without significantly burdening fleet operators or electrical infrastructure. All 63 HDVs were equipped with portable emissions measurement systems when they were tested for in-use NOx emissions during their routine operation on California roadways. The data was analyzed using the moving average window method proposed by the Environmental Protection Agency (EPA) in which the in-use emissions are broken up into two bins dependent on the engine load: ≤6 % (idle) and >6 % of maximum rated power. It was found that diesel engines manufactured after 2020 and natural gas engines certified to the 0.02 g/bhp-h NOx standard met the 2027 and 2035 EPA in-use NOx standards for both bins even though the future standards do not apply to these older engines. In addition, over an 80 % reduction in average NOx emissions is seen in both bins and fuels as modern NOx and greenhouse gas standards were implemented in 2017. With the implementation of ultralow NOx diesel technology engines, capable of meeting 0.035 g/bhp-h NOx limits, it was found that reductions in the NOx emissions inventories from 90.0 to 91.9 % could be achieved by 2050, depending on the deployment of BEVs. In conclusion, current and upcoming engine technologies can serve as benchmark powertrain solutions for emissions inventory reductions in the near and intermediate terms solutions even to the extent that the transition to battery electric HDVs becomes more gradual. 
    more » « less
  3. Scented wax products, such as candles and wax warmers/melts, are popular fragranced consumer products that are commonly used in residential buildings. As scented wax products are intentionally fragranced to produce pleasant smellscapes for occupants, they may represent an important source of volatile organic compounds (VOCs) to indoor atmospheres. The aim of this study is to evaluate terpene emission factors (EFs) and inhalation intake fractions (iFs) for scented wax products to better understand their impact on indoor chemistry and chemical exposures. Full-scale emission experiments were conducted in the Purdue zEDGE Test House using a variety of scented candles (n = 5) and wax warmers/melts (n = 14) under different outdoor air exchange rates (AERs). Terpene concentrations were measured in real-time using a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). PTR-TOF-MS measurements revealed that scented candle and wax warmer/melt products emit a variety of monoterpenes (C10H16) and oxygen-containing monoterpenoids (C10H14O, C10H16O, C10H18O, C10H20O), with peak concentrations in the range of 10^−1 to 10^2 ppb. Monoterpene EFs were much greater for scented wax warmers/melts (C10H16 EFs ~ 10^2 mg per g wax consumed) compared to scented candles (C10H16 EFs ~ 10^−1 to 100 mg per g wax consumed). Significant emissions of reactive terpenes from both products, along with nitrogen oxides (NO, NO2) from candles, depleted indoor ozone (O3) concentrations. Terpene iFs were similar between the two products (iFs ~ 10^3 ppm) and increased with decreasing outdoor AER. Terpene iFs during concentration decay periods were similar to, or greater than, iFs during active emission periods for outdoor AERs ≤ 3.0 h^−1. Overall, scented wax warmers/melts were found to release greater quantities of monoterpenes compared to other fragranced consumer products used in the home, including botanical disinfectants, hair care products, air fresheners, and scented sprays. 
    more » « less
  4. null (Ed.)
    Since its first confirmed case at the end of 2019, COVID-19 has become a global pandemic in three months with more than 1.4 million confirmed cases worldwide, as of early April 2020. Quantifying the changes of pollutant emissions due to COVID-19 and associated governmental control measures is crucial to understand its impacts on economy, air pollution, and society. We used the WRF-GC model and the tropospheric NO2 column observations retrieved by the TROPOMI instrument to derive the top-down NOx emission change estimation between the three periods: P1 (January 1st to January 22nd, 2020), P2 (January 23rd, Wuhan lockdown, to February 9th, 2020), and P3 (February 10th, back-to-work day, to March 12th, 2020). We found that NOx emissions in East China averaged during P2 decreased by 50% compared to those averaged during P1. The NOx emissions averaged during P3 increased by 26% compared to those during P2. Most provinces in East China gradually regained some of their NOx emissions after February 10, the official back-to-work day, but NOx emissions in most provinces have not yet to return to their previous levels in early January. NOx emissions in Wuhan, the first epicenter of COVID-19, had no sign of emission recovering by March 12. A few provinces, such as Zhejiang and Shanxi, have recovered fast, with their averaged NOx emissions during P3 almost back to pre-lockdown levels. 
    more » « less
  5. Intelligent cruise control with traffic preview introduces a potential to adjust the vehicle velocity and improve fuel consumption and emissions. This paper presents trade-offs observed during velocity trajectory optimizations when the objective function varies from fuel-based targets to emissions-based. The scenarios studied consider velocity optimization while following a hypothetical leader executing the federal test procedure (FTP) velocity profile with distance constraint, instead of the classical legislated velocity constraint, to enable the flexibility in optimizing the velocity trajectory. The vehicle model including longitudinal dynamics, fuel consumption and tailpipe NOx emissions is developed for a medium-duty truck with a diesel engine and verified over the FTP. Then, dynamic programming is applied on a reduced-order model to solve the constraint trajectory optimization problem and calculate an optimal vehicle velocity profile over the temperature stabilized phase (Bag 2) of the FTP. Results show 59% less tailpipe NOx emissions with an emission-optimized drive cycle but with 17% more fuel consumption compared to a non-optimized baseline. Whereas, a fuel-optimized cycle improves the fuel efficiency by 18% but with doubled tailpipe NOx emissions. Moreover, it is shown that for a diesel powertrain, including the aftertreatment system efficiency associated with the thermal dynamics is crucial to optimize the tailpipe NOx emissions and can not be ignored for problem simplification. 
    more » « less