Sleep is an evolutionarily ancient behavior, yet multiple cave-dwelling populations of the Mexican tetra, Astyanax mexicanus, have converged on sleep loss compared to surface fish. However, most of the 34 cave populations remain unstudied, and sleep in natural habitats is largely unknown. To address this, we measured sleep and activity in 15 representative populations of surface, cave, and hybrid populations. All cavefish and hybrid populations tested exhibited drastically reduced sleep, including hybrid populations with diverse eye and pigmentation phenotypes. Mapping behavior onto the A. mexicanus phylogeny revealed that reduced sleep and elevated locomotor activity evolved independently multiple times. Field experiments confirmed that wild fish also exhibit sleep loss, paralleling laboratory findings. These results demonstrate deep evolutionary convergence on sleep loss across cavefish lineages and suggest that sleep reduction is a primary trait contributing to adaptation in subterranean environments.
more »
« less
Evidence for rapid divergence of sensory systems between Texas populations of the Mexican tetra (Astyanax mexicanus)
Population divergence is often quantified using phenotypic variation. However, because sensory abilities are more difficult to discern, we have little information on the plasticity and rate of sensory change between different environments. The Mexican tetra (Astyanax mexicanus) is a fish distributed throughout Southern Texas and Northern Mexico and has evolved troglomorphic phenotypes, such as vestigial eyes and reduced pigmentation, when surface ancestors invaded caves in the past several hundred thousand years. In the early 1900s, surfaceA. mexicanuswere introduced to the karstic Edwards-Trinity Aquifer in Texas. Subsequent cave colonization of subterranean environments resulted in fish with phenotypic and behavioral divergence from their surface counterparts, allowing examination of how new environments lead to sensory changes. We hypothesized that recently introduced cave populations would be more sensitive to light and sound when compared to their surface counterparts. We quantified divergence using auditory evoked potentials (AEPs) and particle acceleration levels (PALs) to measure differences in sound sensitivity, and electroretinography (ERGs) to measure light sensitivity. We also compared these results to measurements taken from native populations and lab-born individuals of the introduced populations. Honey Creek Cave fish were significantly more sensitive than proximate Honey Creek surface fish to sound pressure levels between 0.6 and 0.8 kHz and particle acceleration levels between 0.4 and 0.8 kHz. Pairwise differences were found between San Antonio Zoo surface and the facultative subterranean San Pedro Springs and Blue Hole populations, which exhibited more sensitivity to particle acceleration levels between 0.5 and 0.7 kHz. Electroretinography results indicate no significant differences between populations, although Honey Creek Cave fish may be trending toward reduced visual sensitivity. Auditory thresholds between wild-caught and lab-raised populations of recently invaded fish show significant differences in sensitivity, suggesting that these traits are plastic. Collectively, while these results may point to the rapid divergence ofA. mexicanusin cave habitats, it also highlights the responsive plasticity ofA. mexicanusauditory system to disparate environments.
more »
« less
- Award ID(s):
- 1933076
- PAR ID:
- 10471495
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Ecology and Evolution
- Volume:
- 11
- ISSN:
- 2296-701X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. Cave-dwelling Astyanax mexicanus populations are well adapted to subterranean life and many populations appear to have evolved troglomorphic traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Here we present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, we performed quantitative trait locus (QTL) mapping analyses and found new candidate genes for eye loss such as dusp26 . We used CRISPR gene editing in A. mexicanus to confirm the essential role of a gene within an eye size QTL, rx3 , in eye formation. We also generated the first genome-wide evaluation of deletion variability across cavefish populations to gain insight into this potential source of cave adaptation. The surface fish genome reference now provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species.more » « less
-
Animals inhabiting subterranean environments tend to evolve a constellation of ‘regressive’ and ‘constructive’ features. Regressive traits like vision and pigmentation are reduced or lost in derived organisms. In contrast, constructive traits like non-visual sensation, are commonly augmented and evolving under strong selection. Numerous studies have examined the genetic, developmental and molecular bases for regressive traits, while constructive traits have received less attention. A key constructive sensory feature in cave animals is the gustatory system which is likely useful for animals living in complete darkness, given the need to secure food for survival. Interestingly, despite having been studied for decades in the Mexican tetra, Astyanax mexicanus , much remains unknown regarding the biological basis, and adaptive relevance, of taste system evolution in cave morphs. Here, we present a brief review of taste system research in this system, conducted over the past ~90 years. We underscore key differences in gustation between cave and surface fish that reside at the levels of anatomy, perception and behavior. From this review, we sought to identify key knowledge gaps in our understanding of constructive taste system evolution. Future studies will provide further insights to the nature of constructive trait evolution by determining if constructive and regressive traits evolve through similar or different genetic and developmental mechanisms, and provide an essential case study for examining convergence of constructive traits across geographically distinct populations.more » « less
-
Adaptive responses to hypoxia are likely accompanied by highly diverse changes in gene expression. Here, we examined the transcriptomic regulation in blood samples derived from independently-derived captive cave-dwelling fish. These fish are members of the speciesAstyanax mexicanus, which comprises two morphs: an obligate subterranean form, and a “surface-dwelling” form that lives in rivers and streams located near cave localities. These morphs diverged ∼20,000–200,000 years ago, and cavefish derived from multiple, distinct cave localities have adapted to life in hypoxic waters. Here, we focused on captive-rearedAstyanaxmorphs since elevated hemoglobin levels persist in cavefish despite rearing in the normoxic conditions of a laboratory. A GO enrichment analysis revealed several instances of convergent gene regulation between some, but not all, cavefish populations. This finding suggests that different gene expression patterns have evolved in response to hypoxia across geologically-distinct cave localities. Additionally, we identified differential regulation of numerous genes of the canonical hypoxic response pathway. Interestingly, some genes activating this pathway were expressed lower in captive-reared cavefish. These patterns of gene expression may have evolved in cavefish as a consequence of negative pleiotropic consequences associated with prolongedhifgene expression. At present, it is unknown whether this finding is a function of captivity, or whether these expression patterns are also present in wild populations. Collectively, this work provides new insights to the transcriptomic regulation of hypoxia tolerance using a cavefish model evolving in distinct oxygenated environments.more » « less
-
Abstract Studying how different genotypes respond to environmental variation is essential to understand the genetic basis of adaptation. The Mexican tetra,Astyanax mexicanus, has cave and surface‐dwelling morphotypes that have adapted to entirely different environments in the wild, and are now successfully maintained in lab conditions. While this has enabled the identification of genetic adaptations underlying a variety of physiological processes, few studies have directly compared morphotypes between lab‐reared and natural populations. Such comparative approaches could help dissect the varying effects of environment and morphotype, and determine the extent to which phenomena observed in the lab are generalizable to conditions in the field. To this end, we take a transcriptomic approach to compare the Pachón cavefish and their surface fish counterparts in their natural habitats and the lab environment. We identify key changes in expression of genes implicated in metabolism and physiology between groups of fish, suggesting that morphotype (surface or cave) and environment (natural or lab) both alter gene expression. We find gene expression differences between cave and surface fish in their natural habitats are much larger than differences in expression between morphotypes in the lab environment. However, lab‐raised cave and surface fish still exhibit numerous gene expression changes, supporting genetically encoded changes in livers of this species. From this, we conclude that a controlled laboratory environment may serve as an ideal setting to study the genetic underpinnings of metabolic and physiological differences between the cavefish and surface fish.more » « less
An official website of the United States government

