Introduction:The current liver organ shortage has pushed the field of transplantation to develop new methods to prolong the preservation time of livers from the current clinical standard of static cold storage. Our approach, termed partial freezing, aims to induce a thermodynamically stable frozen state at high subzero storage temperatures (−10°C to −15°C), while simultaneously maintaining a sufficient unfrozen fraction to limit ice-mediated injury. Methods and results:Using glycerol as the main permeating cryoprotectant agent, this research first demonstrated that partially frozen rat livers showed similar outcomes after thawing from either −10°C or −15°C with respect to subnormothermic machine perfusion metrics. Next, we assessed the effect of adding ice modulators, including antifreeze glycoprotein (AFGP) or a polyvinyl alcohol/polyglycerol combination (X/Z-1000), on the viability and structural integrity of partially frozen rat livers compared to glycerol-only control livers. Results showed that AFGP livers had high levels of ATP and the least edema but suffered from significant endothelial cell damage. X/Z-1000 livers had the highest levels of ATP and energy charge (EC) but also demonstrated endothelial damage and post-thaw edema. Glycerol-only control livers exhibited the least DNA damage on Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining but also had the lowest levels of ATP and EC. Discussion:Further research is necessary to optimize the ideal ice modulator cocktail for our partial-freezing protocol. Modifications to cryoprotective agent (CPA) combinations, including testing additional ice modulators, can help improve the viability of these partially frozen organs.
more »
« less
DETECTING PULMONARY EDEMA THROUGHOUT EX VIVO LUNG PERFUSION
Abstract Ex Vivo Lung Perfusion (EVLP) is now a powerful clinical technique that has facilitated the increase in successful human lung transplantation procedures. By having the abilities to assess marginal lungs, extend preservation times, and expand geographical distances for donations, EVLP has effectively both expanded the human lung transplantation donor pool and shortened times on the transplant waitlist. While clinical usage has expanded, preclinical research on EVLP has not. EVLP can be utilized as a preclinical research model, i.e., to investigate pharmacological responses (e.g., post-conditioning agents), organ preservation, device testing and/or methodology development. To facilitate the use of EVLP as a research tool, we have developed a low-cost testing system with ever increasing capabilities e.g., the use of a novel continuous weight sensor to evaluate lung edema. Real time tracking of edema allows us to hone in on potential causes of lung damage, and investigate techniques to rehabilitate and mitigate damage on a short time scale (<8 hours). This system enhances our abilities to accurately test medical devices, lung physiology, and potential treatment impacts on lungs.
more »
« less
- Award ID(s):
- 1941543
- PAR ID:
- 10471514
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8673-1
- Format(s):
- Medium: X
- Location:
- Minneapolis, MN, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Computational modelling of the lungs is an active field of study that integrates computational advances with lung biophysics, biomechanics, physiology and medical imaging to promote individualized diagnosis, prognosis and therapy evaluation in lung diseases. The complex and hierarchical architecture of the lung offers a rich, but also challenging, research area demanding a cross-scale understanding of lung mechanics and advanced computational tools to effectively model lung biomechanics in both health and disease. Various approaches have been proposed to study different aspects of respiration, ranging from compartmental to discrete micromechanical and continuum representations of the lungs. This article reviews several developments in computational lung modelling and how they are integrated with preclinical and clinical data. We begin with a description of lung anatomy and how different tissue components across multiple length scales affect lung mechanics at the organ level. We then review common physiological and imaging data acquisition methods used to inform modelling efforts. Building on these reviews, we next present a selection of model-based paradigms that integrate data acquisitions with modelling to understand, simulate and predict lung dynamics in health and disease. Finally, we highlight possible future directions where computational modelling can improve our understanding of the structure–function relationship in the lung.more » « less
-
Abstract Background For 50 years, static cold storage (SCS) has been the gold standard for solid organ preservation in transplantation. Although logistically convenient, this preservation method presents important constraints in terms of duration and cold ischemia-induced lesions. We aimed to develop a machine perfusion (MP) protocol for recovery of vascularized composite allografts (VCA) after static cold preservation and determine its effects in a rat limb transplantation model. Methods Partial hindlimbs were procured from Lewis rats and subjected to SCS in Histidine-Tryptophan-Ketoglutarate solution for 0, 12, 18, 24, and 48 hours. They were then either transplanted (Txp), subjected to subnormothermic machine perfusion (SNMP) for 3 hours with a modified Steen solution, or to SNMP + Txp. Perfusion parameters were assessed for blood gas and electrolytes measurement, and flow rate and arterial pressures were monitored continuously. Histology was assessed at the end of perfusion. For select SCS durations, graft survival and clinical outcomes after transplantation were compared between groups at 21 days. Results Transplantation of limbs preserved for 0, 12, 18, and 24-hour SCS resulted in similar survival rates at postoperative day 21. Grafts cold-stored for 48 hours presented delayed graft failure (p = 0.0032). SNMP of limbs after 12-hour SCS recovered the vascular resistance, potassium, and lactate levels to values similar to limbs that were not subjected to SCS. However, 18-hour SCS grafts developed significant edema during SNMP recovery. Transplantation of grafts that had undergone a mixed preservation method (12-hour SCS + SNMP + Txp) resulted in better clinical outcomes based on skin clinical scores at day 21 post-transplantation when compared to the SCS + Txp group (p = 0.01613). Conclusion To date, VCA MP is still limited to animal models and no protocols are yet developed for graft recovery. Our study suggests that ex vivo SNMP could help increase the preservation duration and limit cold ischemia-induced injury in VCA transplantation.more » « less
-
Asakura, Atsushi (Ed.)Vascularized composite allografts (VCAs) refer to en bloc heterogenous tissue that is transplanted to restore form and function after amputation or tissue loss. Rat limb VCA has emerged as a robust translational model to study the pathophysiology of these transplants. However, these models have predominately focused on hindlimb VCAs which does not translate anatomically to upper extremity transplantation, whereas the majority of clinical VCAs are upper extremity and hand transplants. This work details our optimization of rat forelimb VCA procurement and sub-normothermic machine perfusion (SNMP) protocols, with results in comparison to hindlimb perfusion with the same perfusion modality. Results indicate that compared to hindlimbs, rat forelimbs on machine perfusion mandate lower flow rates and higher acceptable maximum pressures. Additionally, low-flow forelimbs have less cellular damage than high-flow forelimbs based on oxygen uptake, edema, potassium levels, and histology through 2 hours of machine perfusion. These results are expected to inform future upper extremity VCA preservation studies.more » « less
-
Due to its ability to induce heterogenous, patient-specific damage in pulmonary alveoli and capillaries, COVID-19 poses challenges in defining a uniform profile to elucidate infection across all patients. Computational models that integrate changes in ventilation and perfusion with heterogeneous damage profiles offer valuable insights into the impact of COVID-19 on pulmonary health. This study aims to develop an in silico hypothesis-testing platform specifically focused on studying microvascular pulmonary perfusion in COVID-19-infected lungs. Through this platform, we explore the effects of various acinar-level pulmonary perfusion abnormalities on global lung function. Our modelling approach simulates changes in pulmonary perfusion and the resulting mismatch of ventilation and perfusion in COVID-19-afflicted lungs. Using this coupled modelling platform, we conducted multiple simulations to assess different scenarios of perfusion abnormalities in COVID-19-infected lungs. The simulation results showed an overall decrease in ventilation-perfusion (V/Q) ratio with inclusion of various types of perfusion abnormalities such as hypoperfusion with and without microangiopathy. This model serves as a foundation for comprehending and comparing the spectrum of findings associated with COVID-19 in the lung, paving the way for patient-specific modelling of microscale lung damage in emerging pulmonary pathologies like COVID-19.more » « less
An official website of the United States government

