skip to main content


Title: Development of a rat forelimb vascularized composite allograft (VCA) perfusion protocol

Vascularized composite allografts (VCAs) refer to en bloc heterogenous tissue that is transplanted to restore form and function after amputation or tissue loss. Rat limb VCA has emerged as a robust translational model to study the pathophysiology of these transplants. However, these models have predominately focused on hindlimb VCAs which does not translate anatomically to upper extremity transplantation, whereas the majority of clinical VCAs are upper extremity and hand transplants. This work details our optimization of rat forelimb VCA procurement and sub-normothermic machine perfusion (SNMP) protocols, with results in comparison to hindlimb perfusion with the same perfusion modality. Results indicate that compared to hindlimbs, rat forelimbs on machine perfusion mandate lower flow rates and higher acceptable maximum pressures. Additionally, low-flow forelimbs have less cellular damage than high-flow forelimbs based on oxygen uptake, edema, potassium levels, and histology through 2 hours of machine perfusion. These results are expected to inform future upper extremity VCA preservation studies.

 
more » « less
Award ID(s):
1941543
NSF-PAR ID:
10471528
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Asakura, Atsushi
Publisher / Repository:
NSF
Date Published:
Journal Name:
PLOS ONE
Volume:
18
Issue:
1
ISSN:
1932-6203
Page Range / eLocation ID:
e0266207
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Background For 50 years, static cold storage (SCS) has been the gold standard for solid organ preservation in transplantation. Although logistically convenient, this preservation method presents important constraints in terms of duration and cold ischemia-induced lesions. We aimed to develop a machine perfusion (MP) protocol for recovery of vascularized composite allografts (VCA) after static cold preservation and determine its effects in a rat limb transplantation model.

    Methods Partial hindlimbs were procured from Lewis rats and subjected to SCS in Histidine-Tryptophan-Ketoglutarate solution for 0, 12, 18, 24, and 48 hours. They were then either transplanted (Txp), subjected to subnormothermic machine perfusion (SNMP) for 3 hours with a modified Steen solution, or to SNMP + Txp. Perfusion parameters were assessed for blood gas and electrolytes measurement, and flow rate and arterial pressures were monitored continuously. Histology was assessed at the end of perfusion. For select SCS durations, graft survival and clinical outcomes after transplantation were compared between groups at 21 days.

    Results Transplantation of limbs preserved for 0, 12, 18, and 24-hour SCS resulted in similar survival rates at postoperative day 21. Grafts cold-stored for 48 hours presented delayed graft failure (p = 0.0032). SNMP of limbs after 12-hour SCS recovered the vascular resistance, potassium, and lactate levels to values similar to limbs that were not subjected to SCS. However, 18-hour SCS grafts developed significant edema during SNMP recovery. Transplantation of grafts that had undergone a mixed preservation method (12-hour SCS + SNMP + Txp) resulted in better clinical outcomes based on skin clinical scores at day 21 post-transplantation when compared to the SCS + Txp group (p = 0.01613).

    Conclusion To date, VCA MP is still limited to animal models and no protocols are yet developed for graft recovery. Our study suggests that ex vivo SNMP could help increase the preservation duration and limit cold ischemia-induced injury in VCA transplantation.

     
    more » « less
  2. Abstract Objective

    To incorporate chronic vascular adaptations into a mathematical model of the rat hindlimb to simulate flow restoration following total occlusion of the femoral artery.

    Methods

    A vascular wall mechanics model is used to simulate acute and chronic vascular adaptations in the collateral arteries and collateral‐dependent arterioles of the rat hindlimb. On an acute timeframe, the vascular tone of collateral arteries and distal arterioles is determined by responses to pressure, shear stress, and metabolic demand. On a chronic timeframe, sustained dilation of arteries and arterioles induces outward vessel remodeling represented by increased passive vessel diameter (arteriogenesis), and low venous oxygen saturation levels induce the growth of new capillaries represented by increased capillary number (angiogenesis).

    Results

    The model predicts that flow compensation to an occlusion is enhanced primarily by arteriogenesis of the collateral arteries on a chronic time frame. Blood flow autoregulation is predicted to be disrupted and to occur for higher pressure values following femoral arterial occlusion.

    Conclusions

    Structural adaptation of the vasculature allows for increased blood flow to the collateral‐dependent region after occlusion. Although flow is still below pre‐occlusion levels, model predictions indicate that interventions which enhance collateral arteriogenesis would have the greatest potential for restoring flow.

     
    more » « less
  3. Abstract

    The anuran body plan is defined by morphological features associated with saltatory locomotion, but these specializations may have functional consequences for other modes of locomotion. Several frog species use a quadrupedal walking gait as their primary mode of locomotion, characterized by limbs that move in diagonal pairs. Here, we examine how walking species may deviate from the ancestral body plan and how the kinematics of a quadrupedal gait are modified to accommodate the anuran body plan. We use a comparative analysis of limb lengths to test the hypothesis that quadrupedal anurans shift away from the standard anuran condition defined by short forelimbs and long hindlimbs. We also use three‐dimensional high‐speed videography in four anuran species (Kassina senegalensis,Melanophryniscus stelzneri,Phrynomantis bifasciatus, andPhyllomedusa hypochondrialis) to characterize footfall patterns and body posture during quadrupedal locomotion, measuring the angle and timing of joint excursions in the fore‐ and hindlimb during walking to compare kinematics between limbs of disparate lengths. Our results show frogs specialized for walking tend to have less disparity in the lengths of their fore‐ and hindlimbs compared with other anurans. We find quadrupedal walking species use a vertically retracted hindlimb posture to accommodate their relatively longer hindlimbs and minimize body pitch angle during a stride. Overall, this novel quadrupedal gait can be accommodated by changes in limb posture during locomotion and changes in the relative limb lengths of walking specialists.

     
    more » « less
  4. Abstract Objective

    There is currently a lack of clarity regarding which vascular segments contribute most significantly to flow compensation following a major arterial occlusion. This study uses hemodynamic principles and computational modeling to demonstrate the relative contributions of capillaries, arterioles, and collateral arteries at rest or exercise following an abrupt, total, and sustained femoral arterial occlusion.

    Methods

    The vascular network of the simulated rat hindlimb is based on robust measurements of blood flow and pressure in healthy rats from exercise and training studies. The sensitivity of calf blood flow to acute or chronic vascular adaptations in distinct vessel segments is assessed.

    Results

    The model demonstrates that decreasing the distal microcirculation resistance has almost no effect on flow compensation, while decreasing collateral arterial resistance is necessary to restore resting calf flow following occlusion. Full restoration of non‐occluded flow is predicted under resting conditions given all chronic adaptations, but only 75% of non‐occluded flow is restored under exercise conditions.

    Conclusion

    This computational method establishes the hemodynamic significance of acute and chronic adaptations in the microvasculature and collateral arteries under rest and exercise conditions. Regardless of the metabolic level being simulated, this study consistently shows the dominating significance of collateral vessels following an occlusion.

     
    more » « less
  5. Abstract Objective

    The development of earlier and less invasive treatments for peripheral arterial disease requires a more complete understanding of vascular responses following a major arterial occlusion. A mechanistic model of the vasculature of the rat hindlimb is developed to predict acute (immediate) changes in vessel diameters and smooth muscle tone following femoral arterial occlusion.

    Methods

    Vascular responses of collateral arteries and distal arterioles to changes in pressure, shear stress, and metabolism are assessed before and after occlusion. The effects of exercise are also simulated and compared with venous flow measurements from WKY rats.

    Results

    The model identifies collateral arteries as the primary contributors to flow compensation following occlusion. Increasing the number of capillaries has minimal effect on blood flow while increasing the number of collateral arteries significantly increases flow, since the primary site of resistance shifts upstream to the collateral arteries following occlusion. Despite significant collateral dilation, calf flow remains below pre‐occlusion levels and the deficit becomes more severe with increased activity.

    Conclusions

    Although unable to compensate fully for an occlusion, the model demonstrates the importance of the shear response in collateral arteries and the metabolic response in the distal microcirculation in acute adaptations to a major arterial occlusion.

     
    more » « less