skip to main content

This content will become publicly available on July 3, 2024

Title: Concept-based explanations for out-of-distribution detectors
Out-of-distribution (OOD) detection plays a crucial role in ensuring the safe deployment of deep neural network (DNN) classifiers. While a myriad of methods have focused on improving the performance of OOD detectors, a critical gap remains in interpreting their decisions. We help bridge this gap by providing explanations for OOD detectors based on learned high-level concepts. We first propose two new metrics for assessing the effectiveness of a particular set of concepts for explaining OOD detectors: 1) detection completeness, which quantifies the sufficiency of concepts for explaining an OOD-detector’s decisions, and 2) concept separability, which captures the distributional separation between in-distribution and OOD data in the concept space. Based on these metrics, we propose an unsupervised framework for learning a set of concepts that satisfy the desired properties of high detection completeness and concept separability, and demonstrate its effectiveness in providing concept-based explanations for diverse off-the-shelf OOD detectors. We also show how to identify prominent concepts contributing to the detection results, and provide further reasoning about their decisions.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of Machine Learning Research
Date Published:
Journal Name:
International Conference on Machine Learning
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many real-world scenarios in which DNN-based recognition systems are deployed have inherently fine-grained attributes (e.g., bird-species recognition, medical image classification). In addition to achieving reliable accuracy, a critical subtask for these models is to detect Out-of-distribution (OOD) inputs. Given the nature of the deployment environment, one may expect such OOD inputs to also be fine-grained w.r.t. the known classes (e.g., a novel bird species), which are thus extremely difficult to identify. Unfortunately, OOD detection in fine-grained scenarios remains largely underexplored. In this work, we aim to fill this gap by first carefully constructing four large-scale fine-grained test environments, in which existing methods are shown to have difficulties. Particularly, we find that even explicitly incorporating a diverse set of auxiliary outlier data during training does not provide sufficient coverage over the broad region where fine-grained OOD samples locate. We then propose Mixture Outlier Exposure (MixOE), which mixes ID data and training outliers to expand the coverage of different OOD granularities, and trains the model such that the prediction confidence linearly decays as the input transitions from ID to OOD. Extensive experiments and analyses demonstrate the effectiveness of MixOE for building up OOD detector in fine-grained environments. The code is available at 
    more » « less
  2. Legal texts routinely use concepts that are difficult to understand. Lawyers elaborate on the meaning of such concepts by, among other things, carefully investigating how they have been used in the past. Finding text snippets that mention a particular concept in a useful way is tedious, time-consuming, and hence expensive. We assembled a data set of 26,959 sentences, coming from legal case decisions, and labeled them in terms of their usefulness for explaining selected legal concepts. Using the dataset we study the effectiveness of transformer models pre-trained on large language corpora to detect which of the sentences are useful. In light of models{'} predictions, we analyze various linguistic properties of the explanatory sentences as well as their relationship to the legal concept that needs to be explained. We show that the transformer-based models are capable of learning surprisingly sophisticated features and outperform the prior approaches to the task. 
    more » « less
  3. We study the problem of explaining a rich class of behavioral properties of deep neural networks. Distinctively, our influence-directed explanations approach this problem by peering inside the network to identify neurons with high influence on a quantity and distribution of interest, using an axiomatically-justified influence measure, and then providing an interpretation for the concepts these neurons represent. We evaluate our approach by demonstrating a number of its unique capabilities on convolutional neural networks trained on ImageNet. Our evaluation demonstrates that influence-directed explanations (1) identify influential concepts that generalize across instances, (2) can be used to extract the “essence” of what the network learned about a class, and (3) isolate individual features the network uses to make decisions and distinguish related classes. 
    more » « less
  4. Artificial intelligence-based prostate cancer (PCa) detection models have been widely explored to assist clinical diagnosis. However, these trained models may generate erroneous results specifically on datasets that are not within training distribution. In this paper, we propose an approach to tackle this so-called out-of-distribution (OOD) data problem. Specifically, we devise an end-to-end unsupervised framework to estimate uncertainty values for cases analyzed by a previously trained PCa detection model. Our PCa detection model takes the inputs of bpMRI scans and through our proposed approach we identify OOD cases that are likely to generate degraded performance due to the data distribution shifts. The proposed OOD framework consists of two parts. First, an autoencoder-based reconstruction network is proposed, which learns discrete latent representations of in-distribution data. Second, the uncertainty is computed using perceptual loss that measures the distance between original and reconstructed images in the feature space of a pre-trained PCa detection network. The effectiveness of the proposed framework is evaluated on seven independent data collections with a total of 1,432 cases. The performance of pre-trained PCa detection model is significantly improved by excluding cases with high uncertainty. 
    more » « less
  5. Providing model explanations has gained significant popularity recently. In contrast with the traditional feature-level model explanations, concept-based explanations can provide explanations in the form of high-level human concepts. However, existing concept-based explanation methods implicitly follow a two-step procedure that involves human intervention. Specifically, they first need the human to be involved to define (or extract) the high-level concepts, and then manually compute the importance scores of these identified concepts in a post-hoc way. This laborious process requires significant human effort and resource expenditure due to manual work, which hinders their large-scale deployability. In practice, it is challenging to automatically generate the concept-based explanations without human intervention due to the subjectivity of defining the units of concept-based interpretability. In addition, due to its data-driven nature, the interpretability itself is also potentially susceptible to malicious manipulations. Hence, our goal in this paper is to free human from this tedious process, while ensuring that the generated explanations are provably robust to adversarial perturbations. We propose a novel concept-based interpretation method, which can not only automatically provide the prototype-based concept explanations but also provide certified robustness guarantees for the generated prototype-based explanations. We also conduct extensive experiments on real-world datasets to verify the desirable properties of the proposed method. 
    more » « less