skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large surface deformation due to thermo-mechanical effects during cryopreservation by vitrification – mathematical model and experimental validation
This study presents a simplified thermal-fluids (TF) mathematical model to analyze large surface deformations in cryoprotective agents (CPA) during cryopreservation by vitrification. The CPA deforms during vitrification due to material flow caused by the combined effects of thermal gradients within the domain, thermal contraction due to temperature, and exponential increase in the viscosity of the CPA as it is cooled towards glass transition. While it is well understood that vitrification is associated with thermo-mechanical stress, which might lead to structural damage, those large deformations can lead to stress concentration, further intensifying the probability to structural failure. The results of the TF model are experimentally validated by means of cryomacroscopy on a cuvette containing 7.05M dimethyl sulfoxide (DMSO) as a representative CPA. The TF model presented in this study is a simplified version of a previously presented thermo-mechanics (TM) model, where the TM model is set to solve the coupled heat transfer, fluid mechanics and solid mechanics problems, while the TF model omits further deformations in the solid state. It is demonstrated in this study that the TF model alone is sufficient to capture large-body deformations during vitrification. However, the TF model alone cannot be used to estimate mechanical stresses, which become significant only when the deformation rates become so small that the deformed body practically behaves as an amorphous solid. This study demonstrates the high sensitivity of deformation predictions to variation in material properties, chief among which are the variations of density and viscosity with temperature. Finally, this study includes a discussion on the possibility of turning on and off the TF and TM models in respective parts of the domain, in order to solve the multiphysics problem in a computationally cost-effective manner.  more » « less
Award ID(s):
1941543
PAR ID:
10471552
Author(s) / Creator(s):
; ;
Editor(s):
Nawab, Yasir
Publisher / Repository:
NSF
Date Published:
Journal Name:
PLOS ONE
Volume:
18
Issue:
3
ISSN:
1932-6203
Page Range / eLocation ID:
e0282613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. McCartney, J.S.; Tomac, I. (Ed.)
    Thermal pore pressurization in soil media has been investigated for the past few decades. It has been shown that temperature variations may significantly affect thermal pore pressure in clay soils confined deep into the ground. Moreover, thermal loading may lead to stress change and thermal deformation. Thermo-poroelastic and advance thermo-poroelastoplastic constitutive models have been formulated and incorporated numerically to simulate the thermo-hydro-mechanical process. However, the accurate response of soil media during THM process has not been completely understood. Although numerical modelling reasonably predicts the experimental observations, they still could not be used to completely justify the field observations. In this study, the main features of the thermo-poroelastic model are incorporated in a thermo-poroelastoplastic constitutive model (ACMEG-T) to further investigate the effect of different thermal and hydraulic properties on thermo-hydro-mechanical (THM) response of the soil media. 
    more » « less
  2. Abstract To extend the preservation of donor hearts beyond the current 4–6 h, this paper explores heart cryopreservation by vitrification—cryogenic storage in a glass‐like state. While organ vitrification is made possible by using cryoprotective agents (CPA) that inhibit ice during cooling, failure occurs during convective rewarming due to slow and non‐uniform rewarming which causes ice crystallization and/or cracking. Here an alternative, “nanowarming”, which uses silica‐coated iron oxide nanoparticles (sIONPs) perfusion loaded through the vasculature is explored, that allows a radiofrequency coil to rewarm the organ quickly and uniformly to avoid convective failures. Nanowarming has been applied to cells and tissues, and a proof of principle study suggests it is possible in the heart, but proper physical and biological characterization especially in organs is still lacking. Here, using a rat heart model, controlled machine perfusion loading and unloading of CPA and sIONPs, cooling to a vitrified state, and fast and uniform nanowarming without crystallization or cracking is demonstrated. Further, nanowarmed hearts maintain histologic appearance and endothelial integrity superior to convective rewarming and indistinguishable from CPA load/unload control hearts while showing some promising organ‐level (electrical) functional activity. This work demonstrates physically successful heart vitrification and nanowarming and that biological outcomes can be expected to improve by reducing or eliminating CPA toxicity during loading and unloading. 
    more » « less
  3. Bentley, Barry L. (Ed.)
    This study investigates thermomechanical stress in cryopreservation by vitrification of the heart, while exploring the effects of nanowarming-assisted recovery from cryogenic storage. This study expands upon a recently published study, combining experimental investigation and thermal analysis of cryopreservation on a rat heart model. Specifically, this study focuses on scenarios with variable concentrations of silica-coated iron-oxide nanoparticles (sIONPs), while accounting for loading limitations associated with the heart physiology, as well as the properties of cryoprotective agent (CPA) solution and the geometry of the container. Results of this study suggest that variable sIONP concentration based on the heart physiology will elevate mechanical stresses when compared with the mathematically simplified, uniform distribution case. The most dangerous part of rewarming is below glass transition and at the onset of nanowarming past the glass transition temperature on the way for organ recovery from cryogenic storage. Throughout rewarming, regions that rewarm faster, such as the chambers of the heart (higher sIONP concentration), undergo compressive stresses, while the slower rewarming regions, such as the heart myocardium (low sIONP concentration), undergo tension. Being a brittle material, the vitrified organ is expected to fail under tension in lower stresses than in compression. Unfortunately, the location and magnitude of the maximum stress in the investigated cases varied, while general rules were not identified. This investigation demonstrates the need to tailor the thermal protocol of heart cryopreservation on a case-by-case basis, since the location, orientation, magnitude, and instant at which the maximum mechanical stress is found cannot be predicteda priori. While thermomechanical stress poses a significant risk to organ integrity, careful design of the thermal protocol can be instrumental in reducing the likelihood of structural damage, while taking full advantage of the benefits of nanowarming. 
    more » « less
  4. Low-inertia pulsatile flows in highly distensible viscoelastic vessels exist in many biological and engineering systems. However, many existing works focus on inertial pulsatile flows in vessels with small deformations. As such, here we study the dynamics of a viscoelastic tube at large deformation conveying low-Reynolds-number oscillatory flow using a fully coupled fluid–structure interaction computational model. We focus on a detailed study of the effect of wall (solid) viscosity and oscillation frequency on tube deformation, flow rate, phase shift and hysteresis, as well as the underlying flow physics. We find that the general behaviour is dominated by an elastic flow surge during inflation and a squeezing effect during deflation. When increasing the oscillation frequency, the maximum inlet flow rate increases and tube distention decreases, whereas increasing solid viscosity causes both to decrease. As the oscillation frequency approaches either$$0$$(quasi-steady inflation cycle) or$$\infty$$(steady flow), the behaviours of tubes with different solid viscosities converge. Our results suggest that deformation and flow rate are most affected in the intermediate range of solid viscosity and oscillation frequency. Phase shifts of deformation and flow rate with respect to the imposed pressure are analysed. We predict that the phase shifts vary throughout the oscillation; while the deformation always lags the imposed pressure, the flow rate may either lead or lag depending on the parameter values. As such, the flow rate shows hysteresis behaviour that traces either a clockwise or counterclockwise curve, or a mix of both, in the pressure–flow rate space. This directional change in hysteresis is fully characterised here in the appropriate parameter space. Furthermore, the hysteresis direction is shown to be predicted by the signs of the flow rate phase shifts at the crest and trough of the oscillation. A distinct change in the tube dynamics is also observed at high solid viscosity which leads to global or ‘whole-tube’ motion that is absent in purely elastic tubes. 
    more » « less
  5. Abstract Granular materials with irregular particle shapes undergo a myriad of temperature variations in natural and engineered systems. However, the impacts of cyclic temperature variations on the mechanics of granular materials remain poorly understood. Specifically, little is known about the response of granular materials to cyclic temperature variations as a function of the following central variables: particle shape, applied stress level, relative density, and temperature amplitude. This paper presents advanced laboratory experiments to explore the impacts of cyclic temperature variations on the mechanics of granular materials, with a focus on sands. The results show that cyclic temperature variations applied to sands induce thermal shakedown: the accumulation of irreversible bulk deformations due to microstructural rearrangements caused by thermal expansions and contractions of the constituting particles. The deformation of sands caused by thermal shakedown strongly depends on particle shape, stress level, relative density, and temperature amplitude. This deformation is limited for individual thermal cycles but accumulates and becomes significant for multiple thermal cycles, leading to substantial compaction in sands and other granular materials, which can affect various natural and engineered systems. 
    more » « less