Abstract Two related classes of ligand-binding hemec-containing proteins with a high degree of structural homology have been identified and characterized over recent decades: cytochromes P460 (cyts P460), defined by an unusual heme-lysine cross-link, and cytochromesc′-β (cytsc′-β), containing a canonicalc-heme without the lysine cross-link. The shared protein fold of the cyt P460-cytc′-β superfamily can accommodate a variety of heme environments with entirely different reactivities. On the one hand, cyts P460 with polar distal pockets have been shown to oxidize NH2OH to NO and/or N2O via proton-coupled electron transfer. On the other hand, cytsc′-β with hydrophobic distal pockets have a proposed gas binding function similar to the unrelated, but more extensively characterized, alpha helical cytochromesc′. Recent studies have also identified ‘halfway house’ proteins (cyts P460 with non-polar heme pockets and cytsc′-β with polar distal heme pockets) with functions yet to be resolved. Here, we review the structural, spectroscopic and enzymatic properties of the cyt P460-cytc′-β superfamily with a view to understanding the structural determinants of their different functional properties. Graphical abstract
more »
« less
Electrochemical transformations catalyzed by cytochrome P450s and peroxidases
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIV[double bond, length as m-dash]O intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C–H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
more »
« less
- Award ID(s):
- 2035669
- PAR ID:
- 10471581
- Publisher / Repository:
- RSC
- Date Published:
- Journal Name:
- Chemical Society Reviews
- Volume:
- 52
- Issue:
- 15
- ISSN:
- 0306-0012
- Page Range / eLocation ID:
- 5135 to 5171
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Plant alkaloids constitute an important class of bioactive chemicals with applications in medicine and agriculture. However, the knowledge gap of the diversity and biosynthesis of phytoalkaloids prevents systematic advances in biotechnology for engineered production of these high-value compounds. In particular, the identification of cytochrome P450s driving the structural diversity of phytoalkaloids has remained challenging. Here, we use a combination of reverse genetics with discovery metabolomics and multivariate statistical analysis followed byin plantatransient assays to investigate alkaloid diversity and functionally characterize two candidate cytochrome P450s genes fromAtropa belladonnawithout a priori knowledge of their functions or information regarding the identities of key pathway intermediates. This approach uncovered a largely unexplored root localized alkaloid sub-network that relies on pseudotropine as precursor. The two cytochrome P450s catalyzeN-demethylation and ring-hydroxylation reactions within the early steps in the biosynthesis of diverseN-demethylated modified tropane alkaloids.more » « less
-
Abstract Enzymes as catalysts in organic syntheses can provide high regio‐ and stereo‐selectivity, which is often not possible with chemical catalysts. Biocatalysis with iron heme enzymes has proven efficient when the enzyme is sequestered in thin films. An added feature is improved stability. For example, peroxidases chemically crosslinked in poly‐lysine in films on silica nanoparticles were stable for 9 hrs or more at 90 °C, and were used for biocatalysis up to 90 °C. We show here for a series ofpara‐substituted phenols, single nitro‐phenol products can be selectively synthesized using biocatalytic magnetic beads coated with horseradish peroxidase (HRP) crosslinked in polylysine films. Nitrophenols moieties are important as synthetic intermediates and in drugs. For a series ofpara‐substituted phenols, biocatalytic nitration gave average turnover numbers 1.8‐fold larger at 75 °C than at 25 °C. For phenols giving <50 % conversion after 1 hr at 25 °C, twice the nitration yield was achieved in 1 hr at 75 °C. Results indicate that this approach should be valuable as a general tool for biocatalytic chemical synthesis.more » « less
-
A cold atmospheric-pressure He-plasma jet (CAPPJ) interacts with air and water, producing reactive oxygen and nitrogen species (RONS), including biologically active ions, radicals, and molecules such as NOx, H2O2, HNO3, HNO2, and O3. These compounds can activate interfacial redox processes in biological tissues. The CAPPJ can oxidize N2 to HNO3 and water to H2O2 at the interface between plasma and water. It can also induce the oxidation of water-soluble redox compounds in various organisms and in vitro. This includes salicylic acid, hydroquinone, and mixtures of antioxidants such as L (+)-ascorbic acid sodium salt with NADPH. It can react with redox indicators, such as ferroin, in a three-phase system consisting of air, CAPPJ, and water. Without reducing agents in the water, the CAPPJ will oxidize the water and decrease the pH of the solution. When antioxidants such as ascorbate, 1,4-hydroquinone, or NADPH are present in the aqueous phase, the CAPPJ oxidizes these substances first and then oxidizes water to H2O2. The multielectron mechanisms of the redox reactions in the plasma-air/water interfacial area are discussed and analyzed.more » « less
-
Abstract Dianionic hyponitrite (N2O22−) is often proposed, based on model complexes, as the key intermediate in reductive coupling of nitric oxide to nitrous oxide at the bimetallic active sites of heme‐copper oxidases and nitric oxide reductases. In this work, we examine the gas‐solid reaction of nitric oxide with the metal–organic framework CuI‐ZrTpmC* with a suite of in situ spectroscopies and density functional theory simulations, and identify an unusual chelating N2O2.−intermediate. These results highlight the advantage provided by site‐isolation in metal–organic frameworks (MOFs) for studying important reaction intermediates, and provide a mechanistic scenario compatible with the proposed one‐electron couple in these enzymes.more » « less
An official website of the United States government

