Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Chirality plays a significant role in the manufacture of pharmaceuticals and fine chemicals. The use of chemical catalysts to control stereoselectivity relies on the use of chiral catalysts with labor–intensive synthesis and purification. Natural enzymes offer inherent stereoselectivity, making them attractive catalysts for this purpose. We report here chiral biocatalytic oxidations in microemulsions driven by horseradish peroxidase coupled with a synthetic Cu2+‐polymer catalyst. This hybrid system features crosslinked layer–by–layer (LBL) films composed of polyions with Cu2+‐containing pyrene–labelled poly(2‐hydroxy‐3‐dipicolylamino) propyl methacrylate (Py−PGMADPA) to drive oxygen reduction to form hydrogen peroxide. Peroxide in turn activates horseradish peroxidase (HRP) crosslinked in LbL films on magnetic particle beads to biocatalytically oxidize styrene, ethylbenzene, and methyl phenylacetate to chiral products. R‐stereoisomers of these reactants were selectively formed with a high enantiomeric excess of ≥80 % at 90 °C. The enzyme films show high thermal stability at 90 °C in cetyltrimethylammonium bromide microemulsion. Reactions at 90 °C were essentially complete in 2 hr. This hybrid approach opens a door to new designs of biocatalytic syntheses using a separate electrocatalyst for enzyme activation.more » « less
-
Abstract Enzymes as catalysts in organic syntheses can provide high regio‐ and stereo‐selectivity, which is often not possible with chemical catalysts. Biocatalysis with iron heme enzymes has proven efficient when the enzyme is sequestered in thin films. An added feature is improved stability. For example, peroxidases chemically crosslinked in poly‐lysine in films on silica nanoparticles were stable for 9 hrs or more at 90 °C, and were used for biocatalysis up to 90 °C. We show here for a series ofpara‐substituted phenols, single nitro‐phenol products can be selectively synthesized using biocatalytic magnetic beads coated with horseradish peroxidase (HRP) crosslinked in polylysine films. Nitrophenols moieties are important as synthetic intermediates and in drugs. For a series ofpara‐substituted phenols, biocatalytic nitration gave average turnover numbers 1.8‐fold larger at 75 °C than at 25 °C. For phenols giving <50 % conversion after 1 hr at 25 °C, twice the nitration yield was achieved in 1 hr at 75 °C. Results indicate that this approach should be valuable as a general tool for biocatalytic chemical synthesis.more » « less
-
This paper reports a robust strategy to catalyze in situ C–H oxidation by combining cobalt (Co) single-atom catalysts (SACs) and horseradish peroxidase (HRP). Co SACs were synthesized using the complex of Co phthalocyanine with 3-propanol pyridine at the two axial positions as the Co source to tune the coordination environment of Co by the stepwise removal of axial pyridine moieties under thermal annealing. These structural features of Co sites, as confirmed by infrared and X-ray absorption spectroscopy, were strongly correlated to their reactivity. All Co catalysts synthesized below 300 °C were inactive due to the full coordination of Co sites in octahedral geometry. Increasing the calcination temperature led to an improvement in catalytic activity for reducing O2, although molecular Co species with square planar coordination obtained below 600 °C were less selective to reduce O2 to H2O2 through the two-electron pathway. Co SACs obtained at 800 °C showed superior activity in producing H2O2 with a selectivity of 82–85% in a broad potential range. In situ production of H2O2 was further coupled with HRP to drive the selective C–H bond oxidation in 2-naphthol. Our strategy provides new insights into the design of highly effective, stable SACs for selective C–H bond activation when coupled with natural enzymes.more » « less
-
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIV[double bond, length as m-dash]O intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C–H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.more » « less
An official website of the United States government
