skip to main content


This content will become publicly available on May 1, 2024

Title: Quantifying 3D Gravity Wave Drag in a Library of Tropical Convection‐Permitting Simulations for Data‐Driven Parameterizations
Abstract

Atmospheric gravity waves (GWs) span a broad range of length scales. As a result, the un‐resolved and under‐resolved GWs have to be represented using a sub‐grid scale (SGS) parameterization in general circulation models (GCMs). In recent years, machine learning (ML) techniques have emerged as novel methods for SGS modeling of climate processes. In the widely used approach of supervised (offline) learning, the true representation of the SGS terms have to be properly extracted from high‐fidelity data (e.g., GW‐resolving simulations). However, this is a non‐trivial task, and the quality of the ML‐based parameterization significantly hinges on the quality of these SGS terms. Here, we compare three methods to extract 3D GW fluxes and the resulting drag (Gravity Wave Drag [GWD]) from high‐resolution simulations: Helmholtz decomposition, and spatial filtering to compute the Reynolds stress and the full SGS stress. In addition to previous studies that focused only on vertical fluxes by GWs, we also quantify the SGS GWD due to lateral momentum fluxes. We build and utilize a library of tropical high‐resolution (Δx = 3 km) simulations using weather research and forecasting model. Results show that the SGS lateral momentum fluxes could have a significant contribution to the total GWD. Moreover, when estimating GWD due to lateral effects, interactions between the SGS and the resolved large‐scale flow need to be considered. The sensitivity of the results to different filter type and length scale (dependent on GCM resolution) is also explored to inform the scale‐awareness in the development of data‐driven parameterizations.

 
more » « less
Award ID(s):
2004512 2005123
NSF-PAR ID:
10471682
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley Periodicals LLC
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
15
Issue:
5
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Convection‐generated gravity waves (CGWs) transport momentum and energy, and this momentum is a dominant driver of global features of Earth's atmosphere's general circulation (e.g., the quasi‐biennial oscillation, the pole‐to‐pole mesospheric circulation). As CGWs are not generally resolved by global weather and climate models, their effects on the circulation need to be parameterized. However, quality observations of GWs are spatiotemporally sparse, limiting understanding and preventing constraints on parameterizations. Convection‐permitting or ‐resolving simulations do generate CGWs, but validation is not possible as these simulations cannot reproduce the CGW‐forcing convection at correct times, locations, and intensities. Here, realistic convective diabatic heating, learned from full‐physics convection‐permitting Weather Research and Forecasting simulations, is predicted from weather radar observations using neural networks and a previously developed look‐up table. These heating rates are then used to force an idealized GW‐resolving dynamical model. Simulated CGWs forced in this way closely resembled those observed by the Atmospheric InfraRed Sounder in the upper stratosphere. CGW drag in these validated simulations extends 100s of kilometers away from the convective sources, highlighting errors in current gravity wave drag parameterizations due to the use of the ubiquitous single‐column approximation. Such validatable simulations have significant potential to be used to further basic understanding of CGWs, improve their parameterizations physically, and provide more restrictive constraints on tuningwith confidence.

     
    more » « less
  2. Abstract

    We present a new version of the high‐resolution Kühlungsborn Mechanistic general Circulation Model (KMCM) extended toz ∼ 450 km. This model is called HIAMCM (HI Altitude Mechanistic general Circulation Model) and explicitly simulates gravity waves (GWs) down to horizontal wavelengths ofλh  165 km. We find predominant tertiary GWs in the winter thermosphere at middle/high latitudes. These GWs typically have horizontal wavelengthsλh ∼ 300–1,100 km, ground‐based periods25–90 min, and intrinsic horizontal phase speedscIh ∼ 250–350 m s−1. Abovez∼ 200 km, the predominant GW horizontal propagation directions are roughly against the background winds from the diurnal tide; the GWs propagate mainly poleward at midnight, eastward at 6 local time (LT), equatorward at noon, and westward at 18 LT. Wintertime GWs atz∼ 300 km having 165 km λh≤ 330 km create a large hot spot over the Southern Andes/Antarctic Peninsula that agrees well with quiet time satellite measurements. Due to cancelation effects, the time‐averaged zonal mean Eliassen‐Palm flux divergence from the resolved GWs in the thermosphere is negligible compared to that of the tides and compared to the zonal component of the time‐averaged zonal mean ion drag. We also find that the thermospheric GWs dissipate mainly from macroturbulent diffusion and, abovez∼ 200 km, from molecular diffusion, whereas the tides dissipate mainly from ion drag. The averaged dissipative heating in the thermosphere due to tides is much stronger than that due to GWs.

     
    more » « less
  3. Abstract

    In this study, the mechanism driving the narrow lower‐thermospheric winter‐to‐summer meridional circulation is thoroughly investigated for the first time using the Specified Dynamics configuration runs of the Whole Atmosphere Community Climate Model eXtended (SD‐WACCMX) simulations and the TIMED Doppler Interferometer (TIDI) observations. The mean meridional circulation in the SD‐WACCMX is qualitatively consistent with the TIDI measurements, though the magnitude in the SD‐WACCMX is about 50% weaker. The lower‐thermospheric winter‐to‐summer circulation is mainly driven by the resolved wave forcing, including the tides and internally generated inertia gravity waves (GWs). The momentum forcing from the parameterized sub‐grid scale GWs is not as significant as the resolved wave forcing in driving the lower‐thermospheric meridional circulation. The GW parameterization scheme in the SD‐WACCMX only includes GWs with phase velocities in the range of ±45 m/s, which might result in most of the parameterized sub‐grid GWs dissipating and breaking in the mesosphere and hardly impacting the lower thermosphere. Only including slow GWs in the SD‐WACCMX parameterization could potentially lead to the underestimation of the meridional wind in the model. Analysis also indicates the lower‐thermospheric meridional circulation is stronger in the summer hemisphere, which is attributed to the hemispheric asymmetry in the resolved wave momentum forcing. This study underlines the importance of the whole atmosphere coupling through wave propagation and dissipation. This understanding can guide the model development with an accurate representation of underlying physical processes in the mesosphere and lower thermosphere which drives the lower‐thermospheric circulation as well as the overall dynamics of this region.

     
    more » « less
  4. Abstract

    Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave (MW)-resolving hindcasts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx≈ 9 and 13 km globally. The Weather Research and Forecasting (WRF) Model and the Met Office Unified Model (UM) were both configured with a Δx= 3-km regional domain. All domains had tops near 1 Pa (z≈ 80 km). These deep domains allowedquantitativevalidation against Atmospheric Infrared Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx≈ 3-km resolution, small-scale MWs are underresolved and/or overdiffused. MW drag parameterizations are still necessary in NWP models at current operational resolutions of Δx≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈6 times smaller than that resolved at Δx≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e.,) were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet.

    Significance Statement

    This study had three purposes: to quantitatively evaluate how well four state-of-the-science weather models could reproduce observed mountain waves (MWs) in the middle atmosphere, to compare the simulated MWs within the models, and to quantitatively evaluate two MW parameterizations in a widely used climate model. These models reproduced observed MWs with remarkable skill. Still, MW parameterizations are necessary in current Δx≈ 10-km resolution global weather models. Even Δx≈ 3-km resolution does not appear to be high enough to represent all momentum-fluxing MW scales. Meridionally propagating MWs can significantly influence zonal winds over the Drake Passage. Parameterizations that handle horizontal propagation may need to consider horizontal fluxes of horizontal momentum in order to get the direction of their forcing correct.

     
    more » « less
  5. Abstract

    Surface gravity wave effects on currents (WEC) cause the emergence of Langmuir cells (LCs) in a suite of high horizontal resolution (Δx= 30 m), realistic oceanic simulations in the open ocean of central California. During large wave events, LCs develop widely but inhomogeneously, with larger vertical velocities in a deeper mixed layer. They interact with extant submesoscale currents. A 550-m horizontal spatial filter separates the signals of LCs and of submesoscale and larger-scale currents. The LCs have a strong velocity variance with small density gradient variance, while submesoscale currents are large in both. Using coarse graining, we show that WEC induces a forward cascade of kinetic energy in the upper ocean up to at least a 5-km scale. This is due to strong positive vertical Reynolds stress (in both the Eulerian and the Stokes drift energy production terms) at all resolved scales in the WEC solutions, associated with large vertical velocities. The spatial filter elucidates the role of LCs in generating the shear production on the vertical scale of Stokes drift (10 m), while submesoscale currents affect both the horizontal and vertical energy fluxes throughout the mixed layer (50–80 m). There is a slightly weaker forward cascade associated with nonhydrostatic LCs (by 13% in average) than in the hydrostatic case, but overall the simulation differences are small. A vertical mixing schemeK-profile parameterization (KPP) partially augmented by Langmuir turbulence yields wider LCs, which can lead to lower surface velocity gradients compared to solutions using the standard KPP scheme.

     
    more » « less