skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interactive Learning with Pricing for Optimal and Stable Allocations in Markets
Large-scale online recommendation systems must facilitate the allocation of a limited number of items among competing users while learning their preferences from user feedback. As a principled way of incorporating market constraints and user incentives in the design, we consider our objectives to be two-fold: maximal social welfare with minimal instability. To maximize social welfare, our proposed framework enhances the quality of recommendations by exploring allocations that optimistically maximize the rewards. To minimize instability, a measure of users' incentives to deviate from recommended allocations, the algorithm prices the items based on a scheme derived from the Walrasian equilibria. Though it is known that these equilibria yield stable prices for markets with known user preferences, our approach accounts for the inherent uncertainty in the preferences and further ensures that the users accept their recommendations under offered prices. To the best of our knowledge, our approach is the first to integrate techniques from combinatorial bandits, optimal resource allocation, and collaborative filtering to obtain an algorithm that achieves sub-linear social welfare regret as well as sub-linear instability. Empirical studies on synthetic and real-world data also demonstrate the efficacy of our strategy compared to approaches that do not fully incorporate all these aspects.  more » « less
Award ID(s):
2007669
PAR ID:
10471694
Author(s) / Creator(s):
; ;
Publisher / Repository:
PMLR
Date Published:
Journal Name:
Proceedings of the International Workshop on Artificial Intelligence and Statistics
ISSN:
1525-531X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the allocation of divisible goods to competing agents via a market mechanism, focusing on agents with Leontief utilities. The majority of the economics and mechanism design literature has focused on \emph{linear} prices, meaning that the cost of a good is proportional to the quantity purchased. Equilibria for linear prices are known to be exactly the maximum Nash welfare allocations. \emph{Price curves} allow the cost of a good to be any (increasing) function of the quantity purchased. We show that price curve equilibria are not limited to maximum Nash welfare allocations with two main results. First, we show that an allocation can be supported by strictly increasing price curves if and only if it is \emph{group-domination-free}. A similarly characterization holds for weakly increasing price curves. We use this to show that given any allocation, we can compute strictly (or weakly) increasing price curves that support it (or show that none exist) in polynomial time. These results involve a connection to the \emph{agent-order matrix} of an allocation, which may have other applications. Second, we use duality to show that in the bandwidth allocation setting, any allocation maximizing a CES welfare function can be supported by price curves. 
    more » « less
  2. The Nash social welfare problem asks for an allocation of indivisible items to agents in order to maximize the geometric mean of agents' valuations. We give an overview of the constant-factor approximation algorithm for the problem when agents have Rado valuations [Garg et al. 2021]. Rado valuations are a common generalization of the assignment (OXS) valuations and weighted matroid rank functions. Our approach also gives the first constant-factor approximation algorithm for the asymmetric Nash social welfare problem under the same valuations, provided that the maximum ratio between the weights is bounded by a constant. 
    more » « less
  3. We study the problem of allocating indivisible items to budget-constrained agents, aiming to provide fairness and efficiency guarantees. Specifically, our goal is to ensure that the resulting allocation is envy-free up to any item (EFx) while minimizing the amount of inefficiency that this needs to introduce. We first show that there exist two-agent problem instances for which no EFx allocation is Pareto-efficient. We, therefore, turn to approximation and use the (Pareto-efficient) maximum Nash welfare allocation as a benchmark. For two-agent instances, we provide a procedure that always returns an EFx allocation while achieving the best possible approximation of the optimal Nash social welfare that EFx allocations can achieve. For the more complicated case of three-agent instances, we provide a procedure that guarantees EFx, while achieving a constant approximation of the optimal Nash social welfare for any number of items. 
    more » « less
  4. Online pricing has been the focus of extensive research in recent years, particularly in the context of selling an item to sequentially arriving users. However, what if a provider wants to maximize revenue by selling multiple items to multiple users in each round? This presents a complex problem, as the provider must intelligently offer the items to those users who value them the most without exceeding their highest acceptable prices. In this study, we tackle this challenge by designing online algorithms that can efficiently offer and price items while learning user valuations from accept/reject feedback. We focus on three user valuation models (fixed valuations, random experiences, and random valuations) and provide algorithms with nearly-optimal revenue regret guarantees. In particular, for any market setting with N users, M items, and load L (which roughly corresponds to the maximum number of simultaneous allocations possible), our algorithms achieve regret of order O(NMloglog(LT)) under fixed valuations model, O(√NMLT) under random experiences model and O(√NMLT) under random valuations model in T rounds. 
    more » « less
  5. Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)
    Online allocation is a broad class of problems where items arriving online have to be allocated to agents who have a fixed utility/cost for each assigned item so to maximize/minimize some objective. This framework captures a broad range of fundamental problems such as the Santa Claus problem (maximizing minimum utility), Nash welfare maximization (maximizing geometric mean of utilities), makespan minimization (minimizing maximum cost), minimization of 𝓁_p-norms, and so on. We focus on divisible items (i.e., fractional allocations) in this paper. Even for divisible items, these problems are characterized by strong super-constant lower bounds in the classical worst-case online model. In this paper, we study online allocations in the learning-augmented setting, i.e., where the algorithm has access to some additional (machine-learned) information about the problem instance. We introduce a general algorithmic framework for learning-augmented online allocation that produces nearly optimal solutions for this broad range of maximization and minimization objectives using only a single learned parameter for every agent. As corollaries of our general framework, we improve prior results of Lattanzi et al. (SODA 2020) and Li and Xian (ICML 2021) for learning-augmented makespan minimization, and obtain the first learning-augmented nearly-optimal algorithms for the other objectives such as Santa Claus, Nash welfare, 𝓁_p-minimization, etc. We also give tight bounds on the resilience of our algorithms to errors in the learned parameters, and study the learnability of these parameters. 
    more » « less