skip to main content


This content will become publicly available on June 1, 2024

Title: Efficient Discretization of Optimal Transport

Obtaining solutions to optimal transportation (OT) problems is typically intractable when marginal spaces are continuous. Recent research has focused on approximating continuous solutions with discretization methods based on i.i.d. sampling, and this has shown convergence as the sample size increases. However, obtaining OT solutions with large sample sizes requires intensive computation effort, which can be prohibitive in practice. In this paper, we propose an algorithm for calculating discretizations with a given number of weighted points for marginal distributions by minimizing the (entropy-regularized) Wasserstein distance and providing bounds on the performance. The results suggest that our plans are comparable to those obtained with much larger numbers of i.i.d. samples and are more efficient than existing alternatives. Moreover, we propose a local, parallelizable version of such discretizations for applications, which we demonstrate by approximating adorable images.

 
more » « less
Award ID(s):
2117429
NSF-PAR ID:
10471773
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Entropy
Volume:
25
Issue:
6
ISSN:
1099-4300
Page Range / eLocation ID:
839
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This article considers Bayesian model selection via mean-field (MF) variational approximation. Towards this goal, we study the non-asymptotic properties of MF inference that allows latent variables and model misspecification. Concretely, we show a Bernstein–von Mises (BvM) theorem for the variational distribution from MF under possible model misspecification, which implies the distributional convergence of MF variational approximation to a normal distribution centring at the maximal likelihood estimator. Motivated by the BvM theorem, we propose a model selection criterion using the evidence lower bound (ELBO), and demonstrate that the model selected by ELBO tends to asymptotically agree with the one selected by the commonly used Bayesian information criterion (BIC) as the sample size tends to infinity. Compared to BIC, ELBO tends to incur smaller approximation error to the log-marginal likelihood (a.k.a. model evidence) due to a better dimension dependence and full incorporation of the prior information. Moreover, we show the geometric convergence of the coordinate ascent variational inference algorithm, which provides a practical guidance on how many iterations one typically needs to run when approximating the ELBO. These findings demonstrate that variational inference is capable of providing a computationally efficient alternative to conventional approaches in tasks beyond obtaining point estimates.

     
    more » « less
  2. Though generative adversarial networks (GANs) are prominent models to generate realistic and crisp images, they are unstable to train and suffer from the mode collapse problem. The problems of GANs come from approximating the intrinsic discontinuous distribution transform map with continuous DNNs. The recently proposed AE-OT model addresses the discontinuity problem by explicitly computing the discontinuous optimal transform map in the latent space of the autoencoder. Though have no mode collapse, the generated images by AE-OT are blurry. In this paper, we propose the AE-OT-GAN model to utilize the advantages of the both models: generate high quality images and at the same time overcome the mode collapse problems. Specifically, we firstly embed the low dimensional image manifold into the latent space by autoencoder (AE). Then the extended semi-discrete optimal transport (SDOT) map is used to generate new latent codes. Finally, our GAN model is trained to generate high quality images from the latent distribution induced by the extended SDOT map. The distribution transform map from this dataset related latent distribution to the data distribution will be continuous, and thus can be well approximated by the continuous DNNs. Additionally, the paired data between the latent codes and the real images gives us further restriction about the generator and stabilizes the training process. Experiments on simple MNIST dataset and complex datasets like CIFAR10 and CelebA show the advantages of the proposed method. 
    more » « less
  3. Abstract

    This paper investigates robust versions of the general empirical risk minimization algorithm, one of the core techniques underlying modern statistical methods. Success of the empirical risk minimization is based on the fact that for a ‘well-behaved’ stochastic process $\left \{ f(X), \ f\in \mathscr F\right \}$ indexed by a class of functions $f\in \mathscr F$, averages $\frac{1}{N}\sum _{j=1}^N f(X_j)$ evaluated over a sample $X_1,\ldots ,X_N$ of i.i.d. copies of $X$ provide good approximation to the expectations $\mathbb E f(X)$, uniformly over large classes $f\in \mathscr F$. However, this might no longer be true if the marginal distributions of the process are heavy tailed or if the sample contains outliers. We propose a version of empirical risk minimization based on the idea of replacing sample averages by robust proxies of the expectations and obtain high-confidence bounds for the excess risk of resulting estimators. In particular, we show that the excess risk of robust estimators can converge to $0$ at fast rates with respect to the sample size $N$, referring to the rates faster than $N^{-1/2}$. We discuss implications of the main results to the linear and logistic regression problems and evaluate the numerical performance of proposed methods on simulated and real data.

     
    more » « less
  4. Probabilistic circuits (PCs) such as sum-product networks efficiently represent large multi-variate probability distributions. They are preferred in practice over other probabilistic representations, such as Bayesian and Markov networks, because PCs can solve marginal inference (MAR) tasks in time that scales linearly in the size of the network. Unfortunately, the most probable explanation (MPE) task and its generalization, the marginal maximum-a-posteriori (MMAP) inference task remain NP-hard in these models. Inspired by the recent work on using neural networks for generating near-optimal solutions to optimization problems such as integer linear programming, we propose an approach that uses neural networks to approximate MMAP inference in PCs. The key idea in our approach is to approximate the cost of an assignment to the query variables using a continuous multilinear function and then use the latter as a loss function. The two main benefits of our new method are that it is self-supervised, and after the neural network is learned, it requires only linear time to output a solution. We evaluate our new approach on several benchmark datasets and show that it outperforms three competing linear time approximations: max-product inference, max-marginal inference, and sequential estimation, which are used in practice to solve MMAP tasks in PCs.

     
    more » « less
  5. Simulation-free methods for training continuous-time generative models construct probability paths that go between noise distributions and individual data samples. Recent works, such as Flow Matching, derived paths that are optimal for each data sample. However, these algorithms rely on independent data and noise samples, and do not exploit underlying structure in the data distribution for constructing probability paths. We propose Multisample Flow Matching, a more general framework that uses non-trivial couplings between data and noise samples while satisfying the correct marginal constraints. At very small overhead costs, this generalization allows us to (i) reduce gradient variance during training, (ii) obtain straighter flows for the learned vector field, which allows us to generate high-quality samples using fewer function evaluations, and (iii) obtain transport maps with lower cost in high dimensions, which has applications beyond generative modeling. Importantly, we do so in a completely simulation-free manner with a simple minimization objective. We show that our proposed methods improve sample consistency on downsampled ImageNet data sets, and lead to better low-cost sample generation. 
    more » « less