SUMMARY Seismic interrogation of the upper mantle from the base of the crust to the top of the mantle transition zone has revealed discontinuities that are variable in space, depth, lateral extent, amplitude and lack a unified explanation for their origin. Improved constraints on the detectability and properties of mantle discontinuities can be obtained with P-to-S receiver function (Ps-RF) where energy scatters from P to S as seismic waves propagate across discontinuities of interest. However, due to the interference of crustal multiples, uppermost mantle discontinuities are more commonly imaged with lower resolution S-to-P receiver function (Sp-RF). In this study, a new method called CRISP-RF (Clean Receiver-function Imaging using SParse Radon Filters) is proposed, which incorporates ideas from compressive sensing and model-based image reconstruction. The central idea involves applying a sparse Radon transform to effectively decompose the Ps-RF into its underlying wavefield contributions, that is direct conversions, multiples, and noise, based on the phase moveout and coherence. A masking filter is then designed and applied to create a multiple-free and denoised Ps-RF. We demonstrate, using synthetic experiment, that our implementation of the Radon transform using a sparsity-promoting regularization outperforms the conventional least-squares methods and can effectively isolate direct Ps conversions. We further apply the CRISP-RF workflow on real data, including single station data on cratons, common-conversion-point stack at continental margins and seismic data from ocean islands. The application of CRISP-RF to global data sets will advance our understanding of the enigmatic origins of the upper mantle discontinuities like the ubiquitous mid-lithospheric discontinuity and the elusive X-discontinuity. 
                        more » 
                        « less   
                    
                            
                            Crustal Imaging with Noisy Teleseismic Receiver Functions Using Sparse Radon Transforms
                        
                    
    
            ABSTRACT The receiver function (RF) is a widely used crustal imaging technique. In principle, it assumes relatively noise-free traces that can be used to target receiver-side structures following source deconvolution. In practice, however, mode conversions and reflections may be severely degraded by noisy conditions, hampering robust estimation of crustal parameters. In this study, we use a sparsity-promoting Radon transform to decompose the observed RF traces into their wavefield contributions, that is, direct conversions, multiples, and incoherent noise. By applying a crustal mask on the Radon-transformed RF, we obtain noise-free RF traces with only Moho conversions and reflections. We demonstrate, using a synthetic experiment and a real-data example from the Sierra Nevada, that our approach can effectively denoise the RFs and extract the underlying Moho signals. This greatly improves the robustness of crustal structure recovery as exemplified by subsequent H−κ stacking. We further demonstrate, using a station sitting on loose sediments in the Upper Mississippi embayment, that a combination of our approach and frequency-domain filtering can significantly improve crustal imaging in reverberant settings. In the presence of complex crustal structures, for example, dipping Moho, intracrustal layers, and crustal anisotropy, we recommend caution when applying our proposed approach due to the difficulty of interpreting a possibly more complicated Radon image. We expect that our technique will enable high-resolution crustal imaging and inspire more applications of Radon transforms in seismic signal processing. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1818654
- PAR ID:
- 10471836
- Publisher / Repository:
- BSSA
- Date Published:
- Journal Name:
- Bulletin of the Seismological Society of America
- Volume:
- 114
- Issue:
- 3
- ISSN:
- 0037-1106
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract While the receiver function technique has been successfully applied to high‐resolution imaging of sharp discontinuities within and across the lithosphere, it suffers from severe limitations when applied to seafloor seismic recordings. This is because the water and sediment layer could strongly influence the receiver function traces, making detection and interpretation of crust and mantle layering difficult. This effect is often referred to as the singing phenomena in marine environments. We demonstrate, using analytical and synthetic modeling, that this singing effect can be reversed using a selective dereverberation filter tuned to match the elastic property of each layer. We apply the dereverberation filter to high‐quality earthquake records collected from the NoMelt seismic array deployed on normal, mature Pacific seafloor. An appropriate filter designed using the elastic properties of the underlying sediments, obtained from prior studies, greatly improves the detection of Ps conversions from the Moho (∼8.6 km) and from a sharp discontinuity (<∼5 km) across the lithosphere asthenosphere transition (∼72 km). Sensitivity tests show that the dereverberation filter is mostly sensitive to the two‐way travel time of the shear wave in sediment and is robust to seismic noise and small errors in the sediment properties. Our analysis suggests that selectively filtering out the sediment reverberations from ocean seismic data could make inferences on subsurface structure more robust. We expect that this study will enable high‐resolution receiver function imaging of the oceanic plate across the growing ocean bottom seismic arrays being deployed in the global oceans.more » « less
- 
            Abstract Previous geophysical studies in the New England Appalachians identified a ∼15 km offset in crustal thickness near the surface boundary between Laurentia and the accreted terranes. Here, we investigate crustal structure using data from a denser array: New England Seismic Transects experiment, which deployed stations spaced ∼10 km apart across the Laurentia‐Moretown terrane suture in northwestern Massachusetts. We used receiver function (RF) analysis to detectPtoSVconverted waves and identified multiple interfaces beneath the transect. We also implemented a harmonic decomposition analysis to identify features at or near the Moho with dipping and/or anisotropic character. Beneath the Laurentian margin, the Ps converted phase from the Moho arrives almost 5.5 s after the initialPwave, whereas beneath the Appalachian terranes, the pulse arrives at 3.5 s, corresponding to ∼48 and ∼31 km depth, respectively. The character of the RF traces beneath stations in the middle of our array suggests a complex transitional zone with dipping and/or anisotropic boundaries extending at least ∼30 km. This extension is measured in our profiles and perpendicular to the suture. We propose one possible crustal geometry model that is consistent with our observations and results from previous studies.more » « less
- 
            Abstract Accurately determining the seismic structure of the continental deep crust is crucial for understanding its geological evolution and continental dynamics in general. However, traditional tools such as surface waves often face challenges in solving the trade‐offs between elastic parameters and discontinuities. In this work, we present a new approach that combines two established inversion techniques, receiver function H‐κstacking and joint inversion of surface wave dispersion and receiver function waveforms, within a Bayesian Monte Carlo (MC) framework to address these challenges. Demonstrated by synthetic tests, the new method greatly reduces trade‐offs between critical parameters, such as the deep crustal Vs, Moho depth, and crustal Vp/Vs ratio. This eliminates the need for assumptions regarding crustal Vp/Vs ratios in joint inversion, leading to a more accurate outcome. Furthermore, it improves the precision of the upper mantle velocity structure by reducing its trade‐off with Moho depth. Additional notes on the sources of bias in the results are also included. Application of the new approach to USArray stations in the Northwestern US reveals consistency with previous studies and identifies new features. Notably, we find elevated Vp/Vs ratios in the crystalline crust of regions such as coastal Oregon, suggesting potential mafic composition or fluid presence. Shallower Moho depth in the Basin and Range indicates reduced crustal support to the elevation. The uppermost mantle Vs, averaging 5 km below Moho, aligns well with the Pn‐derived Moho temperature variations, offering the potential of using Vs as an additional constraint to Moho temperature and crustal thermal properties.more » « less
- 
            Abstract Distributed acoustic sensing (DAS) is a recently developed technique that has demonstrated its utility in the oil and gas industry. Here we demonstrate the potential of DAS in teleseismic studies using the Goldstone OpticaL Fiber Seismic experiment in Goldstone, California. By analyzing teleseismic waveforms from the 10 January 2018 M7.5 Honduras earthquake recorded on ~5,000 DAS channels and the nearby broadband station GSC, we first compute receiver functions for DAS channels using the vertical‐component GSC velocity as an approximation for the incident source wavelet. The MohoP‐to‐sconversions are clearly visible on DAS receiver functions. We then derive meter‐scale arrival time measurements along the entire 20‐km‐long array. We are also able to measure path‐averaged Rayleigh wave group velocity and local Rayleigh wave phase velocity. The latter, however, has large uncertainties. Our study suggests that DAS will likely play an important role in many fields of passive seismology in the near future.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    