skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using Generated Object Reconstructions to Study Object-based Attention
Award ID(s):
2123920
PAR ID:
10471837
Author(s) / Creator(s):
; ;
Corporate Creator(s):
Publisher / Repository:
Cognitive Computational Neuroscience
Date Published:
Journal Name:
Proceedings of 2023 Conference on Cognitive Computational Neuroscience
Format(s):
Medium: X
Location:
Oxford, UK
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract— A core capability of robots is to reason about mul- tiple objects under uncertainty. Partially Observable Markov Decision Processes (POMDPs) provide a means of reasoning under uncertainty for sequential decision making, but are computationally intractable in large domains. In this paper, we propose Object-Oriented POMDPs (OO-POMDPs), which represent the state and observation spaces in terms of classes and objects. The structure afforded by OO-POMDPs support a factorization of the agent’s belief into independent object distributions, which enables the size of the belief to scale linearly versus exponentially in the number of objects. We formulate a novel Multi-Object Search (MOS) task as an OO-POMDP for mobile robotics domains in which the agent must find the locations of multiple objects. Our solution exploits the structure of OO-POMDPs by featuring human language to selectively update the belief at task onset. Using this structure, we develop a new algorithm for efficiently solving OO-POMDPs: Object- Oriented Partially Observable Monte-Carlo Planning (OO- POMCP). We show that OO-POMCP with grounded language commands is sufficient for solving challenging MOS tasks both in simulation and on a physical mobile robot. 
    more » « less
  2. Contrary to the vast literature in modeling, perceiving, and understanding agent-object (e.g., human-object, hand-object, robot-object) interaction in computer vision and robotics, very few past works have studied the task of object-object interaction, which also plays an important role in robotic manipulation and planning tasks. There is a rich space of object-object interaction scenarios in our daily life, such as placing an object on a messy tabletop, fitting an object inside a drawer, pushing an object using a tool, etc. In this paper, we propose a unified affordance learning framework to learn object-object interaction for various tasks. By constructing four object-object interaction task environments using physical simulation (SAPIEN) and thousands of ShapeNet models with rich geometric diversity, we are able to conduct large-scale object-object affordance learning without the need for human annotations or demonstrations. At the core of technical contribution, we propose an object-kernel point convolution network to reason about detailed interaction between two objects. Experiments on large-scale synthetic data and real-world data prove the effectiveness of the proposed approach. 
    more » « less