skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enantiopure, luminescent, cyclometalated Ir( iii ) complexes with N-heterocyclic carbene-naphthalimide chromophore: design, vibrational circular dichroism and TD-DFT calculations
Chiral [Ir(N^C)2(C^C:)] complexes are described. At room temperature they act as emitters in the red and NIR regions. Their optical and chiroptical properties were studied. Remarkably VCD and TD-DFT allow us to ascertain their stereochemistry.  more » « less
Award ID(s):
2019194
PAR ID:
10471851
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
RSC
Date Published:
Journal Name:
Dalton Transactions
Volume:
51
Issue:
7
ISSN:
1477-9226
Page Range / eLocation ID:
2750 to 2759
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Grasses are exceptionally productive, yet their hydraulic adaptation is paradoxical. Among C3grasses, a high photosynthetic rate (Aarea) may depend on higher vein density (Dv) and hydraulic conductance (Kleaf). However, the higherDvof C4grasses suggests a hydraulic surplus, given their reduced need for highKleafresulting from lower stomatal conductance (gs).Combining hydraulic and photosynthetic physiological data for diverse common garden C3and C4species with data for 332 species from the published literature, and mechanistic modeling, we validated a framework for linkages of photosynthesis with hydraulic transport, anatomy, and adaptation to aridity.C3and C4grasses had similarKleafin our common garden, but C4grasses had higherKleafthan C3species in our meta‐analysis. Variation inKleafdepended on outside‐xylem pathways. C4grasses have highKleaf : gs, which modeling shows is essential to achieve their photosynthetic advantage.Across C3grasses, higherAareawas associated with higherKleaf, and adaptation to aridity, whereas for C4species, adaptation to aridity was associated with higherKleaf : gs. These associations are consistent with adaptation for stress avoidance.Hydraulic traits are a critical element of evolutionary and ecological success in C3and C4grasses and are crucial avenues for crop design and ecological forecasting. 
    more » « less
  2. Summary Increasing atmospheric CO2is changing the dynamics of tropical savanna vegetation. C3trees and grasses are known to experience CO2fertilization, whereas responses to CO2by C4grasses are more ambiguous.Here, we sample stable carbon isotope trends in herbarium collections of South African C4and C3grasses to reconstruct13C discrimination.We found that C3grasses showed no trends in13C discrimination over the past century but that C4grasses increased their13C discrimination through time, especially since 1950. These changes were most strongly linked to changes in atmospheric CO2rather than to trends in rainfall climatology or temperature.Combined with previously published evidence that grass biomass has increased in C4‐dominated savannas, these trends suggest that increasing water‐use efficiency due to CO2fertilization may be changing C4plant–water relations. CO2fertilization of C4grasses may thus be a neglected pathway for anthropogenic global change in tropical savanna ecosystems. 
    more » « less
  3. To expand the range of donor atoms known to stabilize 4fn5d1Ln(ii) ions beyond C, N, and O first row main group donor atoms, the Ln(iii) terphenylthiolate iodides, LnIII(SAriPr6)2I (AriPr6= C6H3-2,6-(C6H2-2,4,6-iPr3)2, Ln = La, Nd) were reduced to LnII(SAriPr6)2complexes. 
    more » « less
  4. Abstract Nematic monodomain liquid crystal elastomers (LCEs) undergo efficient temperature‐induced reversible shape‐shifting around the nematic‐isotropic transition temperature (Tni) due to the presence of the liquid‐crystalline order of mesogens. Usually, theTniof nematic LCEs is much higher than the human body temperature, and therefore LCEs are not often considered for biomedical applications. This study describes an LCE system where theTniis tuned by substitution of the rigid mesogens RM257 with a flexible backbone PEGDA250. By systematically substituting the RM257 with PEGDA250, theTniof LCEs was observed to decrease from 66°C to 23°C. A rate‐optimized LCE material was fabricated with 10 mol % rigid mesogens substituted with a flexible backbone that demonstratedTniat 32°C, in‐between the room temperature of 20°C and the body temperature of 37°C. TheTniallowed the programmed shape at room temperature, quick shape‐shifting upon exposure to body temperature, and before‐programmed shape when kept at body temperature. This LCE material displayed reversible length change of 23%, opacity change, and shape change between room temperature and body temperature. 
    more » « less
  5. Direct recycling methods offer a non‐destructive way to regenerate degraded cathode material. The materials to be recycled in the industry typically constitute a mixture of various cathode materials extracted from a wide variety of retired lithium‐ion batteries. Bridging the gap, a direct recycling method using a low‐temperature sintering process is reported. The degraded cathode mixture of LMO (LiMn2O4) and NMC (LiNiCoMnO2) extracted from retired LIBs was successfully regenerated by the proposed method with a low sintering temperature of 300°C for 4 h. Advanced characterization tools were utilized to validate the full recovery of the crystal structure in the degraded cathode mixture. After regeneration, LMO/NMC cathode mixture shows an initial capacity of 144.0 mAh g−1and a capacity retention of 95.1% at 0.5 C for 250 cycles. The regenerated cathode mixture also shows a capacity of 83 mAh g−1at 2 C, which is slightly higher compared to the pristine material. As a result of the direct recycling process, the electrochemical performance of degraded cathode mixture is recovered to the same level as the pristine material. Life‐cycle assessment results emphasized a 90.4% reduction in energy consumption and a 51% reduction in PM2.5 emissions for lithium‐ion battery packs using a direct recycled cathode mixture compared to the pristine material. 
    more » « less