skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mimetic finite difference operators and higher order quadratures
Abstract Mimetic finite difference operators$$\textbf{D}$$ D ,$$\textbf{G}$$ G are discrete analogs of the continuous divergence (div) and gradient (grad) operators. In the discrete sense, these discrete operators satisfy the same properties as those of their continuum counterparts. In particular, they satisfy a discrete extended Gauss’ divergence theorem. This paper investigates the higher-order quadratures associated with the fourth- and sixth- order mimetic finite difference operators, and show that they are indeed numerical quadratures and satisfy the divergence theorem. In addition, extensions to curvilinear coordinates are treated. Examples in one and two dimensions to illustrate numerical results are presented that confirm the validity of the theoretical findings.  more » « less
Award ID(s):
2019194
PAR ID:
10471855
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
GEM
Date Published:
Journal Name:
GEM - International Journal on Geomathematics
Volume:
14
Issue:
1
ISSN:
1869-2672
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we present counterexamples to maximal$$L^p$$ L p -regularity for a parabolic PDE. The example is a second-order operator in divergence form with space and time-dependent coefficients. It is well-known from Lions’ theory that such operators admit maximal$$L^2$$ L 2 -regularity on$$H^{-1}$$ H - 1 under a coercivity condition on the coefficients, and without any regularity conditions in time and space. We show that in general one cannot expect maximal$$L^p$$ L p -regularity on$$H^{-1}(\mathbb {R}^d)$$ H - 1 ( R d ) or$$L^2$$ L 2 -regularity on$$L^2(\mathbb {R}^d)$$ L 2 ( R d )
    more » « less
  2. Abstract For polyhedral constrained optimization problems and a feasible point$$\textbf{x}$$ x , it is shown that the projection of the negative gradient on the tangent cone, denoted$$\nabla _\varOmega f(\textbf{x})$$ Ω f ( x ) , has an orthogonal decomposition of the form$$\varvec{\beta }(\textbf{x}) + \varvec{\varphi }(\textbf{x})$$ β ( x ) + φ ( x ) . At a stationary point,$$\nabla _\varOmega f(\textbf{x}) = \textbf{0}$$ Ω f ( x ) = 0 so$$\Vert \nabla _\varOmega f(\textbf{x})\Vert $$ Ω f ( x ) reflects the distance to a stationary point. Away from a stationary point,$$\Vert \varvec{\beta }(\textbf{x})\Vert $$ β ( x ) and$$\Vert \varvec{\varphi }(\textbf{x})\Vert $$ φ ( x ) measure different aspects of optimality since$$\varvec{\beta }(\textbf{x})$$ β ( x ) only vanishes when the KKT multipliers at$$\textbf{x}$$ x have the correct sign, while$$\varvec{\varphi }(\textbf{x})$$ φ ( x ) only vanishes when$$\textbf{x}$$ x is a stationary point in the active manifold. As an application of the theory, an active set algorithm is developed for convex quadratic programs which adapts the flow of the algorithm based on a comparison between$$\Vert \varvec{\beta }(\textbf{x})\Vert $$ β ( x ) and$$\Vert \varvec{\varphi }(\textbf{x})\Vert $$ φ ( x )
    more » « less
  3. Abstract A classical parking function of lengthnis a list of positive integers$$(a_1, a_2, \ldots , a_n)$$ ( a 1 , a 2 , , a n ) whose nondecreasing rearrangement$$b_1 \le b_2 \le \cdots \le b_n$$ b 1 b 2 b n satisfies$$b_i \le i$$ b i i . The convex hull of all parking functions of lengthnis ann-dimensional polytope in$${\mathbb {R}}^n$$ R n , which we refer to as the classical parking function polytope. Its geometric properties have been explored in Amanbayeva and Wang (Enumer Combin Appl 2(2):Paper No. S2R10, 10, 2022) in response to a question posed by Stanley (Amer Math Mon 127(6):563–571, 2020). We generalize this family of polytopes by studying the geometric properties of the convex hull of$${\textbf{x}}$$ x -parking functions for$${\textbf{x}}=(a,b,\dots ,b)$$ x = ( a , b , , b ) , which we refer to as$${\textbf{x}}$$ x -parking function polytopes. We explore connections between these$${\textbf{x}}$$ x -parking function polytopes, the Pitman–Stanley polytope, and the partial permutahedra of Heuer and Striker (SIAM J Discrete Math 36(4):2863–2888, 2022). In particular, we establish a closed-form expression for the volume of$${\textbf{x}}$$ x -parking function polytopes. This allows us to answer a conjecture of Behrend et al. (2022) and also obtain a new closed-form expression for the volume of the convex hull of classical parking functions as a corollary. 
    more » « less
  4. Abstract We consider thed-dimensional MagnetoHydroDynamics (MHD) system defined on a sufficiently smooth bounded domain,$$d = 2,3$$ d = 2 , 3 with homogeneous boundary conditions, and subject to external sources assumed to cause instability. The initial conditions for both fluid and magnetic equations are taken of low regularity. We then seek to uniformly stabilize such MHD system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of explicitly constructed, static, feedback controls, which are localized on an arbitrarily small interior subdomain. In additional, they will be minimal in number. The resulting space of well-posedness and stabilization is a suitable product space$$\displaystyle \widetilde{\textbf{B}}^{2- ^{2}\!/_{p}}_{q,p}(\Omega )\times \widetilde{\textbf{B}}^{2- ^{2}\!/_{p}}_{q,p}(\Omega ), \, 1< p < \frac{2q}{2q-1}, \, q > d,$$ B ~ q , p 2 - 2 / p ( Ω ) × B ~ q , p 2 - 2 / p ( Ω ) , 1 < p < 2 q 2 q - 1 , q > d , of tight Besov spaces for the fluid velocity component and the magnetic field component (each “close” to$$\textbf{L}^3(\Omega )$$ L 3 ( Ω ) for$$d = 3$$ d = 3 ). Showing maximal$$L^p$$ L p -regularity up to$$T = \infty $$ T = for the feedback stabilized linear system is critical for the analysis of well-posedness and stabilization of the feedback nonlinear problem. 
    more » « less
  5. Abstract We construct an example of a group$$G = \mathbb {Z}^2 \times G_0$$ G = Z 2 × G 0 for a finite abelian group $$G_0$$ G 0 , a subsetEof $$G_0$$ G 0 , and two finite subsets$$F_1,F_2$$ F 1 , F 2 of G, such that it is undecidable in ZFC whether$$\mathbb {Z}^2\times E$$ Z 2 × E can be tiled by translations of$$F_1,F_2$$ F 1 , F 2 . In particular, this implies that this tiling problem isaperiodic, in the sense that (in the standard universe of ZFC) there exist translational tilings ofEby the tiles$$F_1,F_2$$ F 1 , F 2 , but no periodic tilings. Previously, such aperiodic or undecidable translational tilings were only constructed for sets of eleven or more tiles (mostly in $$\mathbb {Z}^2$$ Z 2 ). A similar construction also applies for$$G=\mathbb {Z}^d$$ G = Z d for sufficiently large d. If one allows the group$$G_0$$ G 0 to be non-abelian, a variant of the construction produces an undecidable translational tiling with only one tile F. The argument proceeds by first observing that a single tiling equation is able to encode an arbitrary system of tiling equations, which in turn can encode an arbitrary system of certain functional equations once one has two or more tiles. In particular, one can use two tiles to encode tiling problems for an arbitrary number of tiles. 
    more » « less