skip to main content


This content will become publicly available on October 9, 2024

Title: Building a bimodal landscape: bedrock lithology and bed thickness controls on the morphology of Last Chance Canyon, New Mexico, USA
We explore how rock properties and channel morphology vary with rock type in Last Chance Canyon, Guadalupe Mountains, New Mexico, USA. The rocks here are composed of horizontally to near-horizontally interbedded carbonate and sandstone. This study focuses on first- and second-order channel sections, where the streams have a lower channel steepness index (ksn) upstream and transition to higher ksn values downstream. We hypothesize that differences in bed thickness and rock strength influence ksn values, both locally by influencing bulk bedrock strength and also nonlocally through the production of coarse sediment. We collected discontinuity intensity data (the length of bedding planes and fractures per unit area), Schmidt hammer rebound measurements, and measured the largest boulder at every 12.2 m elevation contour to test this hypothesis. Bedrock and boulder mineralogy were determined using a lab-based carbonate dissolution method. High-resolution orthomosaics and digital surface models (DSMs) were generated from drone and ground-based photogrammetry. The orthomosaics were used to map channel sections with exposed bedrock. The United States Geological Survey (USGS) 10 m digital elevation models (DEMs) were used to measure channel slope and hillslope relief. We find that discontinuity intensity is negatively correlated with Schmidt hammer rebound values in sandstone bedrock. Channel steepness tends to be higher where reaches are primarily incising through more thickly bedded carbonate bedrock and lower where more thinly bedded sandstone is exposed. Bedrock properties also influence channel morphology indirectly, through coarse sediment input from adjacent hillslopes. Thickly bedded rock layers on hillslopes erode to contribute larger colluvial sediment to adjacent channels, and these reaches have higher ksn values. Larger and more competent carbonate sediment armors both the carbonate and the more erodible sandstone and reduces steepness contrasts across rock types. We interpret that in the relatively steep, high-level ksn downstream channel sections, the slope is primarily controlled by the coarse alluvial cover. We further posit that the upstream low-level ksn reaches have a base level that is fixed by the steep downstream reaches, resulting in a stable configuration, where channel slopes have adjusted to lithologic differences and/or sediment armor.  more » « less
Award ID(s):
1918351 1918459
NSF-PAR ID:
10471890
Author(s) / Creator(s):
; ;
Publisher / Repository:
European Geosciences Union
Date Published:
Journal Name:
Earth Surface Dynamics
Volume:
11
Issue:
5
ISSN:
2196-632X
Page Range / eLocation ID:
995 to 1011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Incising rivers may be confined by low-slope, erodible hillslopes or steep, resistant sidewalls. In the latter case, the system forms a canyon. We present a morphodynamic model that includes the essential elements of a canyon incising into a plateau, including 1) abrasion-driven channel incision, 2) migration of a canyon-head knickpoint, 3) sediment feed from an alluvial channel upstream of the knickpoint, and 4) production of sediment by sidewall collapse. We calculate incision in terms of collision of clasts with the bed. We calculate knickpoint migration using a moving-boundary formulation that allows a slope discontinuity where the channel head meets an alluvial plateau feeder channel. Rather than modeling sidewall collapse events, we model long-term behavior using a constant sidewall slope as the channel incises. Our morphodynamic model specifically applies to canyon, rather than river–hillslope evolution. We implement it for Rainbow Canyon, CA. Salient results are as follows: 1) Sediment supply from collapsing canyon sidewalls can be substantially larger than that supplied from the feeder channel on the plateau. 2) For any given quasi-equilibrium canyon bedrock slope, two conjugate slopes are possible for the alluvial channel upstream, with the lower of the two corresponding to a substantially lower knickpoint migration rate and higher preservation potential. 3) Knickpoint migration occurs at a substantially faster time scale than regrading of the bedrock channel itself, underlying the significance of disequilibrium processes. Although implemented for constant climactic conditions, the model warrants extension to long-term climate variation.

     
    more » « less
  2. Abstract

    Meandering gravel‐bed rivers tend to exhibit bed surface sorting patterns with coarse particles located in pools and fine particles on bar tops. The mechanism by which these patterns emerge has been explored in sand‐bed reaches; however, for gravel‐bed meandering channels it remains poorly understood. Here we present results from a flume experiment in which bed morphology, velocity, sediment sorting patterns, and bed load transport were intensively documented. The experimental channel is 1.35 m wide, 15.2 m long, and its centerline follows a sine‐generated curve with a crossing angle of 20°. Water and sediment input were held constant throughout the experiment and measurements were collected under quasi‐equilibrium conditions. Boundary shear stress calculated from near‐bed velocity measurements indicates that in a channel with mild sinuosity, deposition of fine particles on bars is a result of divergent shear stress at the inside bend of the channel, downstream of the apex. Boundary shear stress in the upstream half of the pool was below critical for coarse particles (>8 mm), leading to an armored pool. Inward directed selective transport was responsible for winnowing of fine particles in the pool. Fine and coarse sediment followed similar trajectories through the meander bend, which contrasts earlier studies of sand‐bedded meanders where the loci of fine and coarse particles cross paths. This suggests a different sorting mechanism for gravel bends. This experiment shows that a complex interaction of quasi‐equilibrium bed topography, selective sediment transport, and secondary currents are responsible for the sorting patterns seen in gravel‐bed, meandering channels.

     
    more » « less
  3. Abstract

    The size distributions of sediment delivered from hillslopes to rivers profoundly influence river morphodynamics, including river incision into bedrock and the quality of aquatic habitat. Yet little is known about the factors that influence size distributions of sediment produced by weathering on hillslopes. We present results of a field study of hillslope sediment size distributions at Inyo Creek, a steep catchment in granitic bedrock of the Sierra Nevada, USA. Particles sampled near the base of hillslopes, adjacent to the trunk stream, show a pronounced decrease in sediment size with decreasing sample elevation across all but the coarsest size classes. Measured size distributions become increasingly bimodal with decreasing elevation, exhibiting a coarse, bouldery mode that does not change with elevation and a more abundant finer mode that shifts from cobbles at the highest elevations to gravel at mid elevations and finally to sand at low elevations. We interpret these altitudinal variations in hillslope sediment size to reflect changes in physical, chemical, and biological weathering that can be explained by the catchment's strong altitudinal gradients in topography, climate, and vegetation cover. Because elevation and travel distance to the outlet are closely coupled, the altitudinal trends in sediment size produce a systematic decrease in sediment size along hillslopes parallel to the trunk stream. We refer to this phenomenon as ‘downvalley fining.’ Forward modeling shows that downvalley fining of hillslope sediment is necessary for downstream fining of the long‐term average flux of coarse sediment in mountain landscapes where hillslopes and channels are coupled and long‐term net sediment deposition is negligible. The model also shows that abrasion plays a secondary role in downstream fining of coarse sediment flux but plays a dominant role in partitioning between the bedload and suspended load. Patterns observed at Inyo Creek may be widespread in mountain ranges around the world. © 2020 John Wiley & Sons Ltd

     
    more » « less
  4. Abstract

    Debris flows are powered by sediment supplied from steep hillslopes where soils are often patchy and interrupted by bare‐bedrock cliffs. The role of patchy soils and cliffs in supplying sediment to channels remains unclear, particularly surrounding wildfire disturbances that heighten debris‐flow hazards by increasing sediment supply to channels. Here, we examine how variation in soil cover on hillslopes affects sediment sizes in channels surrounding the 2020 El Dorado wildfire, which burned debris‐flow prone slopes in the San Bernardino Mountains, California. We focus on six headwater catchments (<0.1 km2) where hillslope sources ranged from a continuous soil mantle to 95% bare‐bedrock cliffs. At each site, we measured sediment grain size distributions at the same channel locations before and immediately following the wildfire. We compared results to a mixing model that accounts for three distinct hillslope sediment sources distinguished by local slope thresholds. We find that channel sediment in fully soil‐mantled catchments reflects hillslope soils (D50 = 0.1–0.2 cm) both before and after the wildfire. In steeper catchments with cliffs, channel sediment is consistently coarse prior to fire (D50 = 6–32 cm) and reflects bedrock fracture spacing, despite cliffs representing anywhere from 5% to 95% of the sediment source area. Following the fire, channel sediment size reduces most (5‐ to 20‐fold) in catchments where hillslope sources are predominantly soil covered but with patches of cliffs. The abrupt fining of channel sediment is thought to facilitate postfire debris‐flow initiation, and our results imply that this effect is greatest where bare‐bedrock cliffs are present but not dominant. A patchwork of bare‐bedrock cliffs is common in steeplands where hillslopes respond to channel incision by landsliding. We show how local slope thresholds applied to such terrain aid in estimating sediment supply conditions before two destructive debris flows that eventually nucleated in these study catchments in 2022.

     
    more » « less
  5. Abstract

    Bed material abrasion is a major control on the partitioning of basin‐scale sediment fluxes between coarse and fine material. While abrasion is traditionally treated as an exponential function of transport distance and a lithology‐specific abrasion coefficient, experimental studies have demonstrated greater complexity in the abrasion process: the rate of abrasion varies with clast angularity, transport rate, and grain size. Yet, few studies have attempted to assess the importance of these complexities in a field setting. Here, we develop a new method for rapidly quantifying baseline abrasion rate in the field via Schmidt Hammer Rock Strength. We use this method, along with measurements of gravel bar lithology, to quantify abrasion in the Suiattle River, a basin in the North Cascades of Washington State in which sediment supply to the channel is dominated by recurrent debris flows from a tributary draining Glacier Peak stratovolcano. Rapid downstream strengthening of river bar sediment and a preferential loss of weak, low‐density vesicular volcanic clasts relative to non‐vesicular ones suggest that abrasion is extremely effective in this system. The standard exponential model for downstream abrasion, using single‐lithology abrasion rates fails to reproduce observed downstream patterns in lithology and clast strength. Incorporating heterogeneity in source material strength as well as transport rate‐dependent abrasion largely resolves this failure. Further work is needed to develop a comprehensive quantitative framework for the dependence of bed material abrasion on grain size and transport rate.

     
    more » « less