skip to main content

Title: Photometry of Outer Solar System Objects from the Dark Energy Survey. I. Photometric Methods, Light-curve Distributions, and Trans-Neptunian Binaries

We report the methods of and initial scientific inferences from the extraction of precision photometric information for the >800 trans-Neptunian objects (TNOs) discovered in the images of the Dark Energy Survey (DES). Scene-modeling photometry is used to obtain shot-noise-limited flux measures for each exposure of each TNO, with background sources subtracted. Comparison of double-source fits to the pixel data with single-source fits are used to identify and characterize two binary TNO systems. A Markov Chain Monte Carlo method samples the joint likelihood of the intrinsic colors of each source as well as the amplitude of its flux variation, given the time series of multiband flux measurements and their uncertainties. A catalog of these colors and light-curve amplitudesAis included with this publication. We show how to assign a likelihood to the distributionq(A) of light-curve amplitudes in any subpopulation. Using this method, we find decisive evidence (i.e., evidence ratio <0.01) that cold classical (CC) TNOs with absolute magnitude 6 <Hr< 8.2 are more variable than the hot classical (HC) population of the sameHr, reinforcing theories that the former form in situ and the latter arise from a different physical population. Resonant and scattering TNOs in thisHrrange have variability consistent with either the HCs or CCs. DES TNOs withHr< 6 are seen to be decisively less variable than higher-Hrmembers of any dynamical group, as expected. More surprising is that detached TNOs are decisively less variable than scattering TNOs, which requires them to have distinct source regions or some subsequent differential processing.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;   « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Medium: X Size: Article No. 18
["Article No. 18"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report the rotational lightcurves of 21 trans-Neptunian objects (TNOs) in Neptune’s 2:1 mean motion resonance obtained with the 6.5 m Magellan-Baade telescope and the 4.3 m Lowell Discovery Telescope. The main survey’s goal is to find objects displaying a large lightcurve amplitude that is indicative of contact binaries or highly elongated objects. In our sample, two 2:1 resonant TNOs showed a significant short-term lightcurve amplitude: 2002 VD130and (531074) 2012 DX98. The full lightcurve of 2012 DX98infers a periodicity of 20.80 ± 0.06 hr and amplitude of 0.56 ± 0.03 mag, whereas 2002 VD130rotates in 9.85 ± 0.07 hr with a 0.31 ± 0.04 mag lightcurve amplitude. Based on lightcurve morphology, we classify (531074) 2012 DX98as a likely contact binary but 2002 VD130as a likely single elongated object. Based on our sample and the lightcurves reported in the literature, we estimate the lower percentage of nearly equal-sized contact binaries at only 7%–14% in the 2:1 resonance, which is comparable to the low fraction reported for the dynamically cold classical TNOs. This low contact binary fraction in the 2:1 Neptune resonance is consistent with the lower estimate of the recent numerical modeling. We report the Sloang′,r′, andi′ surface colors of 2002 VD130, which is an ultra-red TNO whereas 2012 DX98is a very red object based on published surface colors.

    more » « less
  2. Abstract

    There is a complex inclination structure present in the trans-Neptunian object (TNO) orbital distribution in the main classical-belt region (between orbital semimajor axes of 39 and 48 au). The long-term gravitational effects of the giant planets make TNO orbits precess, but nonresonant objects maintain a nearly constant “free” inclination (Ifree) with respect to a local forced precession pole. Because of the likely cosmogonic importance of the distribution of this quantity, we tabulate free inclinations for all main-belt TNOs, each individually computed using barycentric orbital elements with respect to each object’s local forcing pole. We show that the simplest method, based on the Laplace–Lagrange secular theory, is unable to give correct forcing poles for objects near theν18secular resonance, resulting in poorly conservedIfreevalues in much of the main belt. We thus instead implemented an averaged Hamiltonian to obtain the expected nodal precession for each TNO, yielding significantly more accurate free inclinations for nonresonant objects. For the vast majority (96%) of classical-belt TNOs, theseIfreevalues are conserved to < 1° over 4 Gyr numerical simulations, demonstrating the advantage of using this well-conserved quantity in studies of the TNO population and its primordial inclination profile; our computed distributions only reinforce the idea of a very coplanar surviving “cold” primordial population, overlain by a largeI-width implanted “hot” population.

    more » « less
  3. Abstract

    In the present-day Kuiper Belt, the number of compositional classes and the orbital distributions of these classes hold important cosmogonic implications for the solar system. The Colours of the Outer Solar System Origins Survey (Col-OSSOS) recently showed that the observed color distribution of small (H⪆ 6) trans-Neptunian objects (TNOs) can be accounted for by the existence of only two composition classes, named BrightIR and FaintIR, where the range of colors in each class can be modeled as mixtures of two material end-members. Here, we combine the high-precision photometric measurements of Col-OSSOS with those of previous surveys to investigate the orbital distribution of the two color classes and reinterpret the known color–inclination correlation of TNOs in the context of the BrightIR/FaintIR taxonomy. In addition to confirming the previously reported distinct orbital distributions of these classes, we identify a trend of increasing orbital inclinations toward the bluer end of the optical and near-infrared color distribution of BrightIR objects. Using the output of numerical simulations investigating the orbital evolution of TNOs during their scattering phase with Neptune, we show that this trend could reflect a composition gradient in the early protoplanetary disk, in the range of heliocentric distances over which TNOs from the BrightIR class accreted. However, tensions between this interpretation and the existence of blue contaminants among cold classical TNOs, and possible alternative origins for the detected correlation, currently bear uncertainty on our proposed interpretation.

    more » « less
  4. Abstract The detached trans-Neptunian objects (TNOs) are those with semimajor axes beyond the 2:1 resonance with Neptune that are neither resonant nor scattering. Using the detached sample from the Outer Solar System Origins Survey (OSSOS) telescopic survey, we produce the first studies of their orbital distribution based on matching the orbits and numbers of the known TNOs after accounting for survey biases. We show that the detached TNO perihelion ( q ) distribution cannot be uniform but is instead better matched by two uniform components with a break near q ≈ 40 au. We produce parametric two-component models that are not rejectable by the OSSOS data set and estimate that there are 36,000 − 9000 + 12 , 000 detached TNOs with absolute magnitudes H r < 8.66 ( D ≳ 100 km) and semimajor axes 48 au < a < 250 au (95% confidence limits). Although we believe that these heuristic two-parameter models yield a correct population estimate, we then use the same methods to show that the perihelion distribution of a detached disk created by a simulated rogue planet matches the q distribution even better, suggesting that the temporary presence of other planets in the early solar system is a promising model to create today’s large semimajor axis TNO population. This cosmogonic simulation results in a detached TNO population estimate of 48,000 − 12 , 000 + 15 , 000 . Because this illustrates how difficult-to-detect q > 50 au objects are likely present, we conclude that there are (5 ± 2) × 10 4 dynamically detached TNOs, roughly twice as many as in the entire trans-Neptunian hot main belt. 
    more » « less
  5. Abstract

    Comet C/2014 UN271(Bernardinelli-Bernstein), incoming from the Oort cloud, is remarkable in having the brightest (and presumably largest) nucleus of any well-measured comet and having been discovered at the heliocentric distancerh≈ 29 au, farther than any Oort cloud comet. In this work, we describe the discovery process and observations and the properties that can be inferred from images recorded until the first reports of activity in 2021 June. The orbit hasi= 95°, with a perihelion of 10.97 au to be reached in 2031 and a previous aphelion at 40,400 ± 260 au. Backward integration of the orbit under a standard Galactic tidal model and known stellar encounters suggests a perihelion ofq≈ 18 au on its previous perihelion passage 3.5 Myr ago; hence, the current data could be the first ever obtained of a comet that has not been inside Uranus’s orbit in 4 Gyr. The photometric data show an unresolved nucleus with absolute magnitudeHr= 8.0, colors that are typical of comet nuclei or Damocloids, and no secular trend as it traversed the range 34–23 au. For ther-band geometric albedopr, this implies a diameter of150(pr/0.04)0.5km. There is strong evidence of brightness fluctuations at the ±0.2 mag level, but no rotation period can be discerned. A coma, nominally consistent with a “stationary” 1/ρsurface brightness distribution, grew in scattering cross section at an exponential rate fromAfρ≈ 1 to ≈150 m as the comet approached from 28 to 20 au. The activity rate is consistent with a very simple model of sublimation of a surface species in radiative equilibrium with the Sun. The inferred enthalpy of sublimation matches those of CO2and NH3. More volatile species, such as N2, CH4, and CO, must be far less abundant on the sublimating surfaces.

    more » « less