skip to main content


Title: Rotational Study of 5:3 and 7:4 Resonant Objects within the Main Classical Trans-Neptunian Belt
Abstract

The 5:3 and 7:4 mean motion resonances of Neptune are at 42.3 and 43.7 au, respectively, and overlap with objects in the classical trans-Neptunian belt (Kuiper Belt). We report the complete/partial lightcurves of 13 and 14 trans-Neptunian objects (TNOs) in the 5:3 and 7:4 resonances, respectively. We report a most likely contact binary in the 7:4 resonance, 2013 FR28, with a periodicity of 13.97 ± 0.04 hr and a lightcurve amplitude of 0.94 ± 0.02 mag. With a V-/U-shaped lightcurve, 2013 FR28has one of the largest well-sampled TNO amplitudes observed with ground-based observations, comparable to the well-determined contact binary 2001 QG298. 2013 FR28has a mass ratioq∼ 1 with a densityρ∼ 1 g cm−3. We find several objects with large amplitudes and classify 2004 SC60, 2006 CJ69, and 2013 BN82as likely contact binaries and 2001 QF331, 2003 YW179, and 2015 FP345as likely elongated objects. We observe the 17:9 resonant or classical object 2003 SP317that we classify as a likely contact binary. A lower estimate of 10%–50% and 20%–55% for the fraction of (nearly) equal-sized contact binaries is calculated in the 5:3 and 7:4 resonances, respectively. Surface colors of 2004 SC60, 2013 BN82, 2014 OL394, and 2015 FP345have been obtained. Including these colors with ones from the literature reveals that elongated objects and contact binaries share the same ultrared surface color, except Manwë–Thorondor and 2004 SC60. Not only are the colors of the 7:4 and 5:3 TNOs similar to the cold classicals, but we demonstrate that the rotational properties of the 5:3 and 7:4 resonants are similar to those of the cold classicals, inferring a clear link between these subpopulations.

 
more » « less
NSF-PAR ID:
10498315
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Planetary Science Journal
Volume:
5
Issue:
4
ISSN:
2632-3338
Format(s):
Medium: X Size: Article No. 84
Size(s):
["Article No. 84"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report the rotational lightcurves of 21 trans-Neptunian objects (TNOs) in Neptune’s 2:1 mean motion resonance obtained with the 6.5 m Magellan-Baade telescope and the 4.3 m Lowell Discovery Telescope. The main survey’s goal is to find objects displaying a large lightcurve amplitude that is indicative of contact binaries or highly elongated objects. In our sample, two 2:1 resonant TNOs showed a significant short-term lightcurve amplitude: 2002 VD130and (531074) 2012 DX98. The full lightcurve of 2012 DX98infers a periodicity of 20.80 ± 0.06 hr and amplitude of 0.56 ± 0.03 mag, whereas 2002 VD130rotates in 9.85 ± 0.07 hr with a 0.31 ± 0.04 mag lightcurve amplitude. Based on lightcurve morphology, we classify (531074) 2012 DX98as a likely contact binary but 2002 VD130as a likely single elongated object. Based on our sample and the lightcurves reported in the literature, we estimate the lower percentage of nearly equal-sized contact binaries at only 7%–14% in the 2:1 resonance, which is comparable to the low fraction reported for the dynamically cold classical TNOs. This low contact binary fraction in the 2:1 Neptune resonance is consistent with the lower estimate of the recent numerical modeling. We report the Sloang′,r′, andi′ surface colors of 2002 VD130, which is an ultra-red TNO whereas 2012 DX98is a very red object based on published surface colors.

     
    more » « less
  2. Abstract We present a search for outer solar system objects in the 6 yr of data from the Dark Energy Survey (DES). The DES covered a contiguous 5000 deg 2 of the southern sky with ≈80,000 3 deg 2 exposures in the grizY filters between 2013 and 2019. This search yielded 812 trans-Neptunian objects (TNOs), one Centaur and one Oort cloud comet, 458 reported here for the first time. We present methodology that builds upon our previous search on the first 4 yr of data. All images were reprocessed with an optimized detection pipeline that leads to an average completeness gain of 0.47 mag per exposure, as well as improved transient catalog production and algorithms for linkage of detections into orbits. All objects were verified by visual inspection and by the “sub-threshold significance,” the signal-to-noise ratio in the stack of images in which its presence is indicated by the orbit, but no detection was reported. This yields a pure catalog complete to r ≈ 23.8 mag and distances 29 < d < 2500 au. The TNOs have minimum (median) of 7 (12) nights’ detections and arcs of 1.1 (4.2) yr, and will have grizY magnitudes available in a further publication. We present software for simulating our observational biases for comparisons of models to our detections. Initial inferences demonstrating the catalog’s statistical power are: the data are inconsistent with the CFEPS-L7 model for the classical Kuiper Belt; the 16 “extreme” TNOs ( a > 150 au, q > 30 au) are consistent with the null hypothesis of azimuthal isotropy; and nonresonant TNOs with q > 38 au, a > 50 au show a significant tendency to be sunward of major mean-motion resonances. 
    more » « less
  3. Abstract

    We present the methods and results from the discovery and photometric measurement of 26 bright VR > 24 trans-Neptunian objects (TNOs) during the first year (2019–20) of the DECam Ecliptic Exploration Project (DEEP). The DEEP survey is an observational TNO survey with wide sky coverage, high sensitivity, and a fast photometric cadence. We apply a computer vision technique known as a progressive probabilistic Hough transform to identify linearly moving transient sources within DEEP photometric catalogs. After subsequent visual vetting, we provide a photometric and astrometric catalog of our TNOs. By modeling the partial lightcurve amplitude distribution of the DEEP TNOs using Monte Carlo techniques, we find our data to be most consistent with an average TNO axis ratiob/a< 0.5, implying a population dominated by non-spherical objects. Based on ellipsoidal gravitational stability arguments, we find our data to be consistent with a TNO population containing a high fraction of contact binaries or other extremely non-spherical objects. We also discuss our data as evidence that the expected binarity fraction of TNOs may be size-dependent.

     
    more » « less
  4. Abstract

    Recent observational surveys of the outer solar system provide evidence that Neptune's distantn:1 mean motion resonances may harbor relatively large reservoirs of trans-Neptunian objects (TNOs). In particular, the discovery of two securely classified 9:1 resonators, 2015 KE172and 2007 TC434, by the Outer Solar System Origins Survey is consistent with a population of order 104such objects in the 9:1 resonance with absolute magnitudeHr< 8.66. This work investigates whether the long-term stability of such populations in Neptune’sn:1 resonances can be used to constrain the existence of distant 5–10Mplanets orbiting at hundreds of au. The existence of such a planet has been proposed to explain a reported clustering in the orbits of highly eccentric “extreme” trans-Neptunian objects (or eTNOs), although this hypothesis remains controversial. We engage in a focused computational case study of the 9:1 resonance, generating synthetic populations and integrating them for 1 Gyr in the presence of 81 different test planets with various masses, perihelion distances, eccentricities, and inclinations. While none of the tested planets are incompatible with the existence of 9:1 resonators, our integrations shed light on the character of the interaction between such planets and nearbyn:1 resonances, and we use this knowledge to construct a simple heuristic method for determining whether or not a given planet could destabilize a given resonant population. We apply this method to the currently estimated properties of Planet 9, and find that a large primordial population in the 15:1 resonance (or beyond), if discovered in the future, could potentially constrain the existence of this planet.

     
    more » « less
  5. Abstract

    We report the methods of and initial scientific inferences from the extraction of precision photometric information for the >800 trans-Neptunian objects (TNOs) discovered in the images of the Dark Energy Survey (DES). Scene-modeling photometry is used to obtain shot-noise-limited flux measures for each exposure of each TNO, with background sources subtracted. Comparison of double-source fits to the pixel data with single-source fits are used to identify and characterize two binary TNO systems. A Markov Chain Monte Carlo method samples the joint likelihood of the intrinsic colors of each source as well as the amplitude of its flux variation, given the time series of multiband flux measurements and their uncertainties. A catalog of these colors and light-curve amplitudesAis included with this publication. We show how to assign a likelihood to the distributionq(A) of light-curve amplitudes in any subpopulation. Using this method, we find decisive evidence (i.e., evidence ratio <0.01) that cold classical (CC) TNOs with absolute magnitude 6 <Hr< 8.2 are more variable than the hot classical (HC) population of the sameHr, reinforcing theories that the former form in situ and the latter arise from a different physical population. Resonant and scattering TNOs in thisHrrange have variability consistent with either the HCs or CCs. DES TNOs withHr< 6 are seen to be decisively less variable than higher-Hrmembers of any dynamical group, as expected. More surprising is that detached TNOs are decisively less variable than scattering TNOs, which requires them to have distinct source regions or some subsequent differential processing.

     
    more » « less