skip to main content


Title: Inferring damage state and evolution with increasing stress using direct and coda wave velocity measurements in faulted and intact granite samples
SUMMARY

A better understanding of damage accumulation before dynamic failure events in geological material is essential to improve seismic hazard assessment. Previous research has demonstrated the sensitivity of seismic velocities to variations in crack geometry, with established evidence indicating that initial crack closure induces rapid changes in velocity. Our study extends these findings by investigating velocity changes by applying coda wave interferometry (CWI). We use an array of 16 piezoceramic transducers to send and record ultrasonic pulses and to determine changes in seismic velocity on intact and faulted Westerly granite samples. Velocity changes are determined from CWI and direct phase arrivals. This study consists of three sets of experiments designed to characterize variations in seismic velocity under various initial and boundary conditions. The first set of experiments tracks velocity changes during hydrostatic compression from 2 and 191 MPa in intact Westerly granite samples. The second set of experiments focuses on saw-cut samples with different roughness and examines the effects of confining pressure increase from 2 to 120 MPa. The dynamic formation of a fracture and the preceding damage accumulation is the focus of the third type of experiment, during which we fractured an initially intact rock sample by increasing the differential stress up to 780 MPa while keeping the sample confined at 75 MPa. The tests show that: (i) The velocity change for rough saw cut samples suggests that the changes in bulk material properties have a more pronounced influence than fault surface apertures or roughness. (ii) Seismic velocities demonstrate higher sensitivity to damage accumulation under increasing differential stress than macroscopic measurements. Axial stress measured by an external load cell deviates from linearity around two-third through the experiment at a stress level of 290 MPa higher than during the initial drop in seismic velocities. (iii) Direct waves exhibit strong anisotropy with increasing differential stress and accumulating damage before rock fracture. Coda waves, on the other hand, effectively average over elastic wave propagation for both fast and slow directions, and the resulting velocity estimates show little evidence for anisotropy. The results demonstrate the sensitivity of seismic velocity to damage evolution at various boundary conditions and progressive microcrack generation with long lead times before dynamic fracture.

 
more » « less
NSF-PAR ID:
10471926
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
235
Issue:
3
ISSN:
0956-540X
Format(s):
Medium: X Size: p. 2846-2861
Size(s):
["p. 2846-2861"]
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    SUMMARY Earthquake ruptures are generally considered to be cracks that propagate as fracture or frictional slip on pre-existing faults. Crack models have been used to describe the spatial distribution of fault offset and the associated static stress changes along a fault, and have implications for friction evolution and the underlying physics of rupture processes. However, field measurements that could help refine idealized crack models are rare. Here, we describe large-scale laboratory earthquake experiments, where all rupture processes were contained within a 3-m long saw-cut granite fault, and we propose an analytical crack model that fits our measurements. Similar to natural earthquakes, laboratory measurements show coseismic slip that gradually tapers near the rupture tips. Measured stress changes show roughly constant stress drop in the centre of the ruptured region, a maximum stress increase near the rupture tips and a smooth transition in between, in a region we describe as the earthquake arrest zone. The proposed model generalizes the widely used elliptical crack model by adding gradually tapered slip at the ends of the rupture. Different from the cohesive zone described by fracture mechanics, we propose that the transition in stress changes and the corresponding linear taper observed in the earthquake arrest zone are the result of rupture termination conditions primarily controlled by the initial stress distribution. It is the heterogeneous initial stress distribution that controls the arrest of laboratory earthquakes, and the features of static stress changes. We also performed dynamic rupture simulations that confirm how arrest conditions can affect slip taper and static stress changes. If applicable to larger natural earthquakes, this distinction between an earthquake arrest zone (that depends on stress conditions) and a cohesive zone (that depends primarily on strength evolution) has important implications for how seismic observations of earthquake fracture energy should be interpreted. 
    more » « less
  2. Abstract

    Brittle fracture propagation in rocks is a complex process due to significant grain‐scale heterogeneity and evolving stress states under dynamic loading conditions. In this work, we use digital image correlation and linear elastic fracture mechanics to make instantaneous measurements of the opening (mode I) and in plane shear (mode II) components of the stress intensity field during dynamic mixed mode crack initiation and propagation in crystalline and granular rocks. Both rock types display some similar fracture behaviors as observed in engineered materials, including rate dependent fracture initiation toughness and a direct relationship between propagation toughness and crack velocity; however, measured propagation toughness is higher than quasi‐static values at crack velocities well below the branching velocity in both rocks. Additionally, due to grain scale controls on the fracture process, mixed mode crack propagation is fundamentally different between these two rock types. Mixed mode propagation is energetically more favorable than pure opening mode propagation in sandstone, while the opposite is true in granite. Furthermore, following initiation, propagation in granite occurs so as to minimize the mode II contribution, irrespective of the initiation conditions, while fractures in sandstone maintain a non‐negligible mode II contribution during propagation across the sample.

     
    more » « less
  3. Abstract

    Large strike‐slip faults experience numerous earthquakes during which transient tensile and compressive mean normal stress perturbations travel along opposing sides of the fault. Research exploring dynamic rock fracture through multiple earthquake cycles has focused predominantly on transient compressive loading, but little is known about off‐fault damage development due to successive tensile loading. We investigate damage accumulation by transient tensile loading over multiple earthquake cycles using a modified sample configuration for uniaxial compressive loading apparatuses consisting of a Westerly granite rock disk bonded to two lead disks. We show that fracture density increases during each successive loading cycle, and pulverized rock can be produced under tension at strain rates as low as 10−3s−1. Therefore, pulverized rock can form at low strain rates, and its texture and extent may be controlled by the size of the coseismic tensile stress perturbation and the number of slip events on the fault.

     
    more » « less
  4. Abstract

    Fluid injection stimulates seismicity far from active tectonic regions. However, the details of how fluids modify on‐fault stresses and initiate seismic events remain poorly understood. We conducted laboratory experiments using a biaxial loading apparatus with a 3 m saw‐cut granite fault and compared events induced at different levels of background shear stress. Water was injected at 10 mL/min and normal stress was constant at 4 MPa. In all experiments, aseismic slip initiated on the fault near the location of fluid injection and dynamic rupture eventually initiated from within the aseismic slipping patch. When the fault was near critically stressed, seismic slip initiated only seconds after MPa‐level injection pressures were reached and the dynamic rupture propagated beyond the fluid pressure perturbed region. At lower stress levels, dynamic rupture initiated hundreds of seconds later and was limited to regions where aseismic slip had significantly redistributed stress from within the pressurized region to neighboring locked patches. We found that the initiation of slow slip was broadly consistent with a Coulomb failure stress, but that initiation of dynamic rupture required additional criteria to be met. Even high background stress levels required aseismic slip to modify on‐fault stress to meet initiation criteria. We also observed slow slip events prior to dynamic rupture. Overall, our experiments suggest that initial fault stress, relative to fault strength, is a critical factor in determining whether a fluid‐induced rupture will “runaway” or whether a fluid‐induced rupture will remain localized to the fluid pressurized region.

     
    more » « less
  5. ABSTRACT:

    Due to rock mass being commonly subjected to compressive or shear loading, the mode II fracture toughness is an important material parameter for rocks. Fracturing in rocks is governed by the behavior of a nonlinear region surrounding the crack tip called the fracture process zone (FPZ). However, the characteristics of mode II fracture are still determined based on the linear elastic fracture mechanics (LEFM), which assumes that a pure mode II loading results in a pure mode II fracture. In this study, the FPZ development in Barre granite specimens under mode II loading was investigated using the short beam compression (SBC) test. Additionally, the influence of lateral confinement on various characteristics of mode II fracture was studied. The experimental setup included the simultaneous monitoring of surface deformation using the two-dimensional digital image correlation technique (2D-DIC) to identify fracture mode and characterize the FPZ evolution in Barre granite specimens. The 2D-DIC analysis showed a dominant mixed-mode I/II fracture in the ligament between two notches, irrespective of confinement level on the SBC specimens. The influence of confinement on the SBC specimens was assessed by analyzing the evolution of crack displacement and changes in value of mode II fracture toughness. Larger levels of damage in confined specimens were observed prior to the failure than the unconfined specimens, indicating an increase in the fracture resistance and therefore mode II fracture toughness with the confining stress.

    1. INTRODUCTION

    The fracturing in laboratory-scale rock specimens is often characterized by the deformation of the inelastic region surrounding the crack tips, also known as the fracture process zone (FPZ) (Backers et al., 2005; Ghamgosar and Erarslan, 2016). While the influence of the FPZ on mode I fracture in rocks has been extensively investigated, there are limited studies on FPZ development in rocks under pure mode II loading (Ji et al., 2016; Lin et al., 2020; Garg et al., 2021; Li et al., 2021).

     
    more » « less