As a step towards understanding the fundamental drivers of polar climate change, we evaluate contributions to polar warming and its seasonal and hemispheric asymmetries in Coupled Model Intercomparison Project phase 6 (CMIP6) as compared with CMIP5. CMIP6 models broadly capture the observed pattern of surface- and winter-dominated Arctic warming that has outpaced both tropical and Antarctic warming in recent decades. For both CMIP5 and CMIP6, CO 2 quadrupling experiments reveal that the lapse-rate and surface albedo feedbacks contribute most to stronger warming in the Arctic than the tropics or Antarctic. The relative strength of the polar surface albedo feedback in comparison to the lapse-rate feedback is sensitive to the choice of radiative kernel, and the albedo feedback contributes most to intermodel spread in polar warming at both poles. By separately calculating moist and dry atmospheric heat transport, we show that increased poleward moisture transport is another important driver of Arctic amplification and the largest contributor to projected Antarctic warming. Seasonal ocean heat storage and winter-amplified temperature feedbacks contribute most to the winter peak in warming in the Arctic and a weaker winter peak in the Antarctic. In comparison with CMIP5, stronger polar warming in CMIP6 results from a larger surface albedo feedback at both poles, combined with less-negative cloud feedbacks in the Arctic and increased poleward moisture transport in the Antarctic. However, normalizing by the global-mean surface warming yields a similar degree of Arctic amplification and only slightly increased Antarctic amplification in CMIP6 compared to CMIP5. 
                        more » 
                        « less   
                    
                            
                            Seasonal Changes in Atmospheric Heat Transport to the Arctic Under Increased CO 2
                        
                    
    
            Abstract Arctic warming under increased CO2peaks in winter, but is influenced by summer forcing via seasonal ocean heat storage. Yet changes in atmospheric heat transport into the Arctic have mainly been investigated in the annual mean or winter, with limited focus on other seasons. We investigate the full seasonal cycle of poleward heat transport modeled with increased CO2or with individually applied Arctic sea‐ice loss and global sea‐surface warming. We find that a winter reduction in dry heat transport is driven by Arctic sea‐ice loss and warming, while a summer increase in moist heat transport is driven by sub‐Arctic warming and moistening. Intermodel spread in Arctic warming controls spread in seasonal poleward heat transport. These seasonal changes and their intermodel spread are well‐captured by down‐gradient diffusive heat transport. While changes in moist and dry heat transport compensate in the annual‐mean, their opposite seasonality may support non‐compensating effects on Arctic warming. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10471978
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 20
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The ice–albedo feedback associated with sea ice loss contributes to polar amplification, while the water vapor feedback contributes to tropical amplification of surface warming. However, these feedbacks are not independent of atmospheric energy transport, raising the possibility of complex interactions that may obscure the drivers of polar amplification, in particular its manifestation across the seasonal cycle. Here, we apply a radiative transfer hierarchy to an idealized aquaplanet global climate model coupled to a thermodynamic sea ice model. The climate responses and radiative feedbacks are decomposed into the contributions from sea ice loss, including both retreat and thinning, and the radiative effect of water vapor changes. We find that summer sea ice retreat causes winter polar amplification through ocean heat uptake and release, and the resulting decrease in dry energy transport weakens the magnitude of warming. Moreover, sea ice thinning is found to suppress summer warming and enhance winter warming, additionally contributing to winter amplification. The water vapor radiative effect produces seasonally symmetric polar warming via offsetting effects: enhanced moisture in the summer hemisphere induces the summer water vapor feedback and simultaneously strengthens the winter latent energy transport in the winter hemisphere by increasing the meridional moisture gradient. These results reveal the importance of changes in atmospheric energy transport induced by sea ice retreat and increased water vapor to seasonal polar amplification, elucidating the interactions among these physical processes.more » « less
- 
            Abstract Arctic surface warming under greenhouse gas forcing peaks in winter and reaches its minimum during summer in both observations and model projections. Many mechanisms have been proposed to explain this seasonal asymmetry, but disentangling these processes remains a challenge in the interpretation of general circulation model (GCM) experiments. To isolate these mechanisms, we use an idealized single-column sea ice model (SCM) that captures the seasonal pattern of Arctic warming. SCM experiments demonstrate that as sea ice melts and exposes open ocean, the accompanying increase in effective surface heat capacity alone can produce the observed pattern of peak warming in early winter (shifting to late winter under increased forcing) by slowing the seasonal heating rate, thus delaying the phase and reducing the amplitude of the seasonal cycle of surface temperature. To investigate warming seasonality in more complex models, we perform GCM experiments that individually isolate sea ice albedo and thermodynamic effects under CO2forcing. These also show a key role for the effective heat capacity of sea ice in promoting seasonal asymmetry through suppressing summer warming, in addition to precluding summer climatological inversions and a positive summer lapse-rate feedback. Peak winter warming in GCM experiments is further supported by a positive winter lapse-rate feedback, due to cold initial surface temperatures and strong surface-trapped warming that are enabled by the albedo effects of sea ice alone. While many factors contribute to the seasonal pattern of Arctic warming, these results highlight changes in effective surface heat capacity as a central mechanism supporting this seasonality. Significance StatementUnder increasing concentrations of atmospheric greenhouse gases, the strongest Arctic warming has occurred during early winter, but the reasons for this seasonal pattern of warming are not well understood. We use experiments in both simple and complex models with certain sea ice processes turned on and off to disentangle potential drivers of seasonality in Arctic warming. When sea ice melts and open ocean is exposed, surface temperatures are slower to reach the warm-season maximum and slower to cool back down below freezing in early winter. We find that this process alone can produce the observed pattern of maximum Arctic warming in early winter, highlighting a fundamental mechanism for the seasonality of Arctic warming.more » « less
- 
            Abstract Arctic amplification has been attributed predominantly to a positive lapse rate feedback in winter, when boundary layer temperature inversions focus warming near the surface. Predicting high-latitude climate change effectively thus requires identifying the local and remote physical processes that set the Arctic’s vertical warming structure. In this study, we analyze output from the CESM Large Ensemble’s twenty-first-century climate change projection to diagnose the relative influence of two Arctic heating sources, local sea ice loss and remote changes in atmospheric heat transport. Causal effects are quantified with a statistical inference method, allowing us to assess the energetic pathways mediating the Arctic temperature response and the role of internal variability across the ensemble. We find that a step-increase in latent heat flux convergence causes Arctic lower-tropospheric warming in all seasons, while additionally reducing net longwave cooling at the surface. However, these effects only lead to small and short-lived changes in boundary layer inversion strength. By contrast, a step-decrease in sea ice extent in the melt season causes, in fall and winter, surface-amplified warming and weakened boundary layer temperature inversions. Sea ice loss also enhances surface turbulent heat fluxes and cloud-driven condensational heating, which mediate the atmospheric temperature response. While the aggregate effect of many moist transport events and seasons of sea ice loss will be different than the response to hypothetical perturbations, our results nonetheless highlight the mechanisms that alter the Arctic temperature inversion in response to CO2forcing. As sea ice declines, the atmosphere’s boundary layer temperature structure is weakened, static stability decreases, and a thermodynamic coupling emerges between the Arctic surface and the overlying troposphere.more » « less
- 
            Abstract Arctic Ocean warming and sea ice loss are closely linked to increased ocean heat transport (OHT) into the Arctic and changes in surface heat fluxes. To quantitatively assess their respective roles, we use the 100-member Community Earth System Model, version 2 (CESM2), Large Ensemble over the 1920–2100 period. We first examine the Arctic Ocean warming in a heat budget framework by calculating the contributions from heat exchanges with atmosphere and sea ice and OHT across the Arctic Ocean gateways. Then we quantify how much anomalous heat from the ocean directly translates to sea ice loss and how much is lost to the atmosphere. We find that Arctic Ocean warming is driven primarily by increased OHT through the Barents Sea Opening, with additional contributions from the Fram Strait and Bering Strait OHTs. These OHT changes are driven mainly by warmer inflowing water rather than changes in volume transports across the gateways. The Arctic Ocean warming driven by OHT is partially damped by increased heat loss through the sea surface. Although absorbed shortwave radiation increases due to reduced surface albedo, this increase is compensated by increasing upwelling longwave radiation and latent heat loss. We also explicitly calculate the contributions of ocean–ice and atmosphere–ice heat fluxes to sea ice heat budget changes. Throughout the entire twentieth century as well as the early twenty-first century, the atmosphere is the main contributor to ice heat gain in summer, though the ocean’s role is not negligible. Over time, the ocean progressively becomes the main heat source for the ice as the ocean warms. Significance StatementArctic Ocean warming and sea ice loss are closely linked to increased ocean heat transport (OHT) into the Arctic and changes in surface heat fluxes. Here we use 100 simulations from the same climate model to analyze future warming and sea ice loss. We find that Arctic Ocean warming is primarily driven by increased OHT through the Barents Sea Opening, though the Fram and Bering Straits are also important. This increased OHT is primarily due to warmer inflowing water rather than changing ocean currents. This ocean heat gain is partially compensated by heat loss through the sea surface. During the twentieth century and early twenty-first century, sea ice loss is mainly linked to heat transferred from the atmosphere; however, over time, the ocean progressively becomes the most important contributor.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
