skip to main content


Title: The Respective Roles of Ocean Heat Transport and Surface Heat Fluxes in Driving Arctic Ocean Warming and Sea Ice Decline
Abstract

Arctic Ocean warming and sea ice loss are closely linked to increased ocean heat transport (OHT) into the Arctic and changes in surface heat fluxes. To quantitatively assess their respective roles, we use the 100-member Community Earth System Model, version 2 (CESM2), Large Ensemble over the 1920–2100 period. We first examine the Arctic Ocean warming in a heat budget framework by calculating the contributions from heat exchanges with atmosphere and sea ice and OHT across the Arctic Ocean gateways. Then we quantify how much anomalous heat from the ocean directly translates to sea ice loss and how much is lost to the atmosphere. We find that Arctic Ocean warming is driven primarily by increased OHT through the Barents Sea Opening, with additional contributions from the Fram Strait and Bering Strait OHTs. These OHT changes are driven mainly by warmer inflowing water rather than changes in volume transports across the gateways. The Arctic Ocean warming driven by OHT is partially damped by increased heat loss through the sea surface. Although absorbed shortwave radiation increases due to reduced surface albedo, this increase is compensated by increasing upwelling longwave radiation and latent heat loss. We also explicitly calculate the contributions of ocean–ice and atmosphere–ice heat fluxes to sea ice heat budget changes. Throughout the entire twentieth century as well as the early twenty-first century, the atmosphere is the main contributor to ice heat gain in summer, though the ocean’s role is not negligible. Over time, the ocean progressively becomes the main heat source for the ice as the ocean warms.

Significance Statement

Arctic Ocean warming and sea ice loss are closely linked to increased ocean heat transport (OHT) into the Arctic and changes in surface heat fluxes. Here we use 100 simulations from the same climate model to analyze future warming and sea ice loss. We find that Arctic Ocean warming is primarily driven by increased OHT through the Barents Sea Opening, though the Fram and Bering Straits are also important. This increased OHT is primarily due to warmer inflowing water rather than changing ocean currents. This ocean heat gain is partially compensated by heat loss through the sea surface. During the twentieth century and early twenty-first century, sea ice loss is mainly linked to heat transferred from the atmosphere; however, over time, the ocean progressively becomes the most important contributor.

 
more » « less
NSF-PAR ID:
10487694
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
37
Issue:
4
ISSN:
0894-8755
Format(s):
Medium: X Size: p. 1431-1448
Size(s):
["p. 1431-1448"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Arctic has undergone dramatic changes in sea ice cover and the hydrologic cycle, both of which strongly impact the freshwater storage in, and export from, the Arctic Ocean. Here we analyze Arctic freshwater storage and fluxes in seven climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and assess their performance over the historical period (1980–2000) and in two future emissions scenarios, SSP1‐2.6 and SSP5‐8.5. Similar to CMIP5, substantial differences exist between the models' Arctic mean states and the magnitude of their 21st century storage and flux changes. In the historical simulation, most models disagree with observations over 1980–2000. In both future scenarios, the models show an increase in liquid freshwater storage and a reduction in solid storage and fluxes through the major Arctic gateways (Bering Strait, Fram Strait, Davis Strait, and the Barents Sea Opening) that is typically larger for SSP5‐8.5 than SSP1‐2.6. The liquid fluxes are driven by both volume and salinity changes, with models exhibiting a change in sign (relative to 1980–2000) of the freshwater flux through the Barents Sea Opening by mid‐century, little change in the Bering Strait flux, and increased export from the remaining straits by the end of the 21st century. In the straits west of Greenland (Nares, Barrow, and Davis straits), the models disagree on the behavior of the liquid freshwater export in the early‐to‐mid 21st century due to differences in the magnitude and timing of a simulated decrease in the volume flux.

     
    more » « less
  2. Abstract

    We review recent trends and projected future physical and chemical changes under climate change in transition zones between Arctic and Subarctic regions with a focus on the two major inflow gateways to the Arctic, one in the Pacific (i.e. Bering Sea, Bering Strait, and the Chukchi Sea) and the other in the Atlantic (i.e. Fram Strait and the Barents Sea). Sea-ice coverage in the gateways has been disappearing during the last few decades. Projected higher air and sea temperatures in these gateways in the future will further reduce sea ice, and cause its later formation and earlier retreat. An intensification of the hydrological cycle will result in less snow, more rain, and increased river runoff. Ocean temperatures are projected to increase, leading to higher heat fluxes through the gateways. Increased upwelling at the Arctic continental shelf is expected as sea ice retreats. The pH of the water will decline as more atmospheric CO2 is absorbed. Long-term surface nutrient levels in the gateways will likely decrease due to increased stratification and reduced vertical mixing. Some effects of these environmental changes on humans in Arctic coastal communities are also presented.

     
    more » « less
  3. Arctic Ocean gateway fluxes play a crucial role in linking the Arctic with the global ocean and affecting climate and marine ecosystems. We reviewed past studies on Arctic–Subarctic ocean linkages and examined their changes and driving mechanisms. Our review highlights that radical changes occurred in the inflows and outflows of the Arctic Ocean during the 2010s. Specifically, the Pacific inflow temperature in the Bering Strait and Atlantic inflow temperature in the Fram Strait hit record highs, while the Pacific inflow salinity in the Bering Strait and Arctic outflow salinity in the Davis and Fram straits hit record lows. Both the ocean heat convergence from lower latitudes to the Arctic and the hydrological cycle connecting the Arctic with Subarctic seas were stronger in 2000–2020 than in 1980–2000. CMIP6 models project a continuing increase in poleward ocean heat convergence in the 21st century, mainly due to warming of inflow waters. They also predict an increase in freshwater input to the Arctic Ocean, with the largest increase in freshwater export expected to occur in the Fram Strait due to both increased ocean volume export and decreased salinity. Fram Strait sea ice volume export hit a record low in the 2010s and is projected to continue to decrease along with Arctic sea ice decline. We quantitatively attribute the variability of the volume, heat, and freshwater transports in the Arctic gateways to forcing within and outside the Arctic based on dedicated numerical simulations and emphasize the importance of both origins in driving the variability. 
    more » « less
  4. Abstract

    A description and assessment of the first release of the Arctic Subpolar gyre sTate Estimate (ASTE_R1), a data‐constrained ocean‐sea ice model‐data synthesis, is presented. ASTE_R1 has a nominal resolution of 1/3° and spans the period 2002–2017. The fit of the model to an extensive (O(109)) set of satellite and in situ observations was achieved through adjoint‐based nonlinear least squares optimization. The improvement of the solution compared to an unconstrained simulation is reflected in misfit reductions of 77% for Argo, 50% for satellite sea surface height, 58% for the Fram Strait mooring, 65% for Ice Tethered Profilers, and 83% for sea ice extent. Exact dynamical and kinematic consistency is a key advantage of ASTE_R1, distinguishing the state estimate from existing ocean reanalyses. Through strict adherence to conservation laws, all sources and sinks within ASTE_R1 can be accounted for, permitting meaningful analysis of closed budgets at the grid‐scale, such as contributions of horizontal and vertical convergence to the tendencies of heat and salt. ASTE_R1 thus serves as the biggest effort undertaken to date of producing a specialized Arctic ocean‐ice estimate over the 21st century. Transports of volume, heat, and freshwater are consistent with published observation‐based estimates across important Arctic Mediterranean gateways. Interannual variability and low frequency trends of freshwater and heat content are well represented in the Barents Sea, western Arctic halocline, and east subpolar North Atlantic. Systematic biases remain in ASTE_R1, including a warm bias in the Atlantic Water layer in the Arctic and deficient freshwater inputs from rivers and Greenland discharge.

     
    more » « less
  5. Abstract

    Climate change impacts are pronounced at high latitudes, where warming, reduced sea-ice-cover, and ocean acidification affect marine ecosystems. We review climate change impacts on two major gateways into the Arctic: the Bering and Chukchi seas in the Pacific and the Barents Sea and Fram Strait in the Atlantic. We present scenarios of how changes in the physical environment and prey resources may affect commercial fish populations and fisheries in these high-latitude systems to help managers and stakeholders think about possible futures. Predicted impacts include shifts in the spatial distribution of boreal species, a shift from larger, lipid-rich zooplankton to smaller, less nutritious prey, with detrimental effects on fishes that depend on high-lipid prey for overwinter survival, shifts from benthic- to pelagic-dominated food webs with implications for upper trophic levels, and reduced survival of commercially important shellfish in waters that are increasingly acidic. Predicted changes are expected to result in disruptions to existing fisheries, the emergence of new fisheries, new challenges for managing transboundary stocks, and possible conflicts among resource users. Some impacts may be irreversible, more severe, or occur more frequently under anthropogenic climate change than impacts associated with natural variability, posing additional management challenges.

     
    more » « less