skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectroscopy of van der Waals nanomaterials: Opportunities and challenges
The study of van der Waals (vdW) materials has seen increased interest in recent years due to the wide range of uses for these materials because of their unique mechanical, electronic, and optical properties. This area has recently expanded further into studying the behavior of vdW nanomaterials as decreasing dimensions open up opportunities to interact with these materials in new ways. However, measuring the band structures of nanomaterials, which is key to understanding how confinement affects material properties and interactions, comes with several challenges. In this review, we survey a range of techniques for synthesizing and characterizing vdW nanomaterials, in order to outline the key material and characterization challenges. This includes controlling the Fermi level in vdW nanoparticles, preparing these particles for either ensemble or individual particle measurement, as well as protecting the pristine surface from oxidation.  more » « less
Award ID(s):
1838504
PAR ID:
10472009
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Applied Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
134
Issue:
17
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The design and formation of van der Waals (vdW) heterostructures with different two-dimensional (2D) materials provide an opportunity to create materials with extraordinary physical properties tailored toward specific applications. Mechanical exfoliation of natural vdW materials has been recognized as an effective way for producing high-quality ultrathin vdW heterostructures. Abramovite is one of such naturally occurring vdW materials, where the superlattice is composed of alternating Pb 2 BiS 3 and SnInS 4 2D material lattices. The forced commensuration between the two incommensurate constituent 2D material lattices induces in-plane structural anisotropy in the formed vdW heterostructure of abramovite, even though the individual 2D material lattices are isotropic in nature. Here, we show that ultrathin layers of vdW heterostructures of abramovite can be achieved by mechanical exfoliation of the natural mineral. Furthermore, the structural anisotropy induced highly anisotropic vibrational and optical responses of abramovite thin flakes are demonstrated by angle-resolved polarized Raman scattering, linear dichroism, and polarization-dependent third-harmonic generation. Our results not only establish abramovite as a promising natural vdW material with tailored linear and nonlinear optical properties for building future anisotropic integrated photonic devices, but also provide a deeper understanding of the origin of structural, vibrational and optical anisotropy in vdW heterostructures. 
    more » « less
  2. Abstract Since the first isolation of graphene, the importance of van der Waals (vdW) interactions has become increasingly recognized in the burgeoning field of layered materials. In this work, infrared nanoimaging techniques and theoretical modeling are used to unravel the critical role played by interfacial vdW interactions in governing the stability of violet phosphorus (VP)—a recently rediscovered wide bandgap p‐type semiconductor—when exfoliated on different substrates. It is demonstrated that vdW interactions with the underlying substrate can have a profound influence on the stability of exfoliated VP flakes and investigate how these interactions are affected by flake thickness, substrate properties (e.g., substrate hydrophilicity, surface roughness), and the exfoliation process. These findings highlight the key role played by interfacial vdW interactions in governing the stability and physical properties of layered materials, and can be used to guide substrate selection in the preparation and study of this important class of materials. 
    more » « less
  3. Abstract Element isotopes are characterized by distinct atomic masses and nuclear spins, which can significantly influence material properties. Notably, however, isotopes in natural materials are homogenously distributed in space. Here, we propose a method to configure material properties by repositioning isotopes in engineered van der Waals (vdW) isotopic heterostructures. We showcase the properties of hexagonal boron nitride (hBN) isotopic heterostructures in engineering confined photon-lattice waves—hyperbolic phonon polaritons. By varying the composition, stacking order, and thicknesses of h10BN and h11BN building blocks, hyperbolic phonon polaritons can be engineered into a variety of energy-momentum dispersions. These confined and tailored polaritons are promising for various nanophotonic and thermal functionalities. Due to the universality and importance of isotopes, our vdW isotope heterostructuring method can be applied to engineer the properties of a broad range of materials. 
    more » « less
  4. Abstract Boron nitride nanotubes (BNNTs) are emerging nanomaterials with analogous structures and similarly impressive mechanical properties to carbon nanotubes (CNTs), but unique chemistry and complimentary multifunctional properties, including higher thermal stability, electrical insulation, optical transparency, neutron absorption capability, and piezoelectricity. Over the past decade, advances in synthesis have made BNNTs more broadly accessible to the nanomaterials and other research communities, removing a major barrier to their utilization and research. Therefore, the field is poised to grow rapidly and see the emergence of BNNT applications ranging from electronics to aerospace materials. A key challenge, that is being gradually overcome, is the development of manufacturing processes to make “neat” BNNT materials. This overview highlights the history and current status of the field, providing both an introduction to this Focus Issue—BNNTs: Synthesis to Applications—as well as a perspective on advances, challenges, and opportunities for this emerging material. Graphical abstract 
    more » « less
  5. Abstract Wide‐bandgap semiconductors (WBGS) with energy bandgaps larger than 3.4 eV for GaN and 3.2 eV for SiC have gained attention for their superior electrical and thermal properties, which enable high‐power, high‐frequency, and harsh‐environment devices beyond the capabilities of conventional semiconductors. Pushing the potential of WBGS boundaries, current research is redefining the field by broadening the material landscape and pioneering sophisticated synthesis techniques tailored for state‐of‐the‐art device architectures. Efforts include the growth of freestanding nanomembranes, the leveraging of unique interfaces such as van der Waals (vdW) heterostructure, and the integration of 2D with 3D materials. This review covers recent advances in the synthesis and applications of freestanding WBGS nanomembranes, from 2D to 3D materials. Growth techniques for WBGS, such as liquid metal and epitaxial methods with vdW interfaces, are discussed, and the role of layer lift‐off processes for producing freestanding nanomembranes is investigated. The review further delves into electronic devices, including field‐effect transistors and high‐electron‐mobility transistors, and optoelectronic devices, such as photodetectors and light‐emitting diodes, enabled by freestanding WBGS nanomembranes. Finally, this review explores new avenues for research, highlighting emerging opportunities and addressing key challenges that will shape the future of the field. 
    more » « less