skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Axi‐symmetrization near Point Vortex Solutions for the 2D Euler Equation
We prove asymptotic stability of point vortex solutions to the full Euler equation in two dimensions. More precisely, we show that a small, Gevrey smooth, and compactly supported perturbation of a point vortex leads to a global solution of the Euler equation in 2D, which converges weakly as $$t\to\infty$$ to a radial profile with respect to the vortex. The position of the point vortex, which is time dependent, stabilizes rapidly and becomes the center of the final, radial profile. The mechanism that leads to stabilization is mixing and inviscid damping. © 2021 Wiley Periodicals LLC.  more » « less
Award ID(s):
2007008
PAR ID:
10472011
Author(s) / Creator(s):
;
Editor(s):
Shatah, Jalal
Publisher / Repository:
Wiley Periodicals LLC
Date Published:
Journal Name:
Communications on Pure and Applied Mathematics
Volume:
75
Issue:
4
ISSN:
0010-3640
Page Range / eLocation ID:
818 to 891
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The present work uses a reduced-order model to study the motion of a buoyant vortex ring with non-negligible core size. Buoyancy is considered in both non-Boussinesq and Boussinesq situations using an axisymmetric contour dynamics formulation. The density of the vortex ring differs from that of the ambient fluid, and both densities are constant and conserved. The motion of the ring is calculated by following the boundary of the vortex core, which is also the interface between the two densities. The velocity of the contour comes from a combination of a specific continuous vorticity distribution within its core and a vortex sheet on the core boundary. An evolution equation for the vortex sheet is derived from the Euler equation, which simplifies considerably in the Boussinesq limit. Numerical solutions for the coupled integro-differential equations are obtained. The dynamics of the vortex sheet and the formation of two possible singularities, including singularities in the curvature and the shock-like profile of the vortex sheet strength, are discussed. Three dimensionless groups, the Atwood, Froude and Weber numbers, are introduced to measure the importance of physical effects acting on the motion of a buoyant vortex ring. 
    more » « less
  2. We consider variational principles related to V. I. Arnold’s stability criteria for steady-state solutions of the two-dimensional incompressible Euler equation. Our goal is to investigate under which conditions the quadratic forms defined by the second variation of the associated functionals can be used in the stability analysis, both for the Euler evolution and for the Navier–Stokes equation at low viscosity. In particular, we revisit the classical example of Oseen’s vortex, providing a new stability proof with a stronger geometric flavor. Our analysis involves a fairly detailed functional-analytic study of the inviscid case, which may be of independent interest, and a careful investigation of the influence of the viscous term in the particular example of the Gaussian vortex. 
    more » « less
  3. null (Ed.)
    Abstract The present paper arose from recent studies of energy-minimal deformations of planar domains.We are concerned with the Dirichlet energy. In general the minimal mappings need not be homeomorphisms. In fact, a part of the domain near its boundary may collapse into the boundary of the target domain. In mathematical models of nonlinear elasticity this is interpreted as interpenetration of matter . We call such occurrence the Nitsche phenomenon , after Nitsche’s remarkable conjecture (now a theorem) about existence of harmonic homeomorphisms between annuli. Indeed the round annuli proved to be perfect choices to grasp the nuances of the problem. Several papers are devoted to a study of deformations of annuli. Because of rotational symmetry it seems likely that the Dirichlet energy-minimal deformations are radial maps. That is why we confine ourselves to radial minimal mappings. The novelty lies in the presence of a weight in the Dirichlet integral. We observe the Nitsche phenomenon in this case as well, see our main results Theorem 1.4 and Theorem 1.7. However, the arguments require further considerations and new ingredients. One must overcome the inherent difficulties arising from discontinuity of the weight. The Lagrange–Euler equation is unavailable, because the outer variation violates the principle of none interpenetration of matter. Inner variation, on the other hand, leads to an equation that involves the derivative of the weight. But our weight function is only measurable which is the main challenge of the present paper. 
    more » « less
  4. A computational study of vorticity reconnection, associated with the breaking and reconnection of vortex lines, during vortex cutting by a blade is reported. A series of Navier–Stokes simulations of vortex cutting with different values of the vortex strength are described, and the different phases in the vortex cutting process are compared to those of the more traditional vortex tube reconnection process. Each of the three phases of vortex tube reconnection described by Melander & Hussain ( Phys. Fluids  A, vol. 1(4), 1989, pp. 633–635) are found to have counterparts in the vortex cutting problem, although we also point out numerous differences in the detailed mechanics by which these phases are achieved. Of particular importance in the vortex cutting process is the presence of vorticity generation from the blade surface within the reconnection region and the presence of strong vortex stretching due to the ambient flow about the blade leading edge. A simple exact Navier–Stokes solution is presented that describes the process by which incident vorticity is stretched and carried towards the surface by the ambient flow, and then interacts with and is eventually annihilated by diffusive interaction with vorticity generated at the surface. The model combines a Hiemenz straining flow, a Burgers vortex sheet and a Stokes first problem boundary layer, resulting in a nonlinear ordinary differential equation and a partial differential equation in two scaled time and distance variables that must be solved numerically. The simple model predictions exhibit qualitative agreement with the full numerical simulation results for vorticity annihilation near the leading-edge stagnation point during vortex cutting. 
    more » « less
  5. Abstract This study investigates the relationship between the azimuthally averaged kinematic structure of the tropical cyclone boundary layer (TCBL) and storm intensity, intensity change, and vortex structure above the BL. These relationships are explored using composites of airborne Doppler radar vertical profiles, which have a higher vertical resolution than typically used three-dimensional analyses and, therefore, better capture TCBL structure. Results show that the BL height, defined by the depth of the inflow layer, is greater in weak storms than in strong storms. The inflow layer outside the radius of maximum tangential wind speed (RMW) is deeper in intensifying storms than in nonintensifying storms at an early stage. The peak BL convergence inside the RMW is larger in intensifying storms than in nonintensifying storms. Updrafts originating from the TCBL are concentrated near the RMW for intensifying TCs, while updrafts span a large radial range outside the RMW for nonintensifying TCs. In terms of vortex structure above the BL, storms with a quickly decaying radial profile of tangential wind outside the RMW (“narrow” vortices) tend to have a deeper inflow layer outside the RMW, stronger inflow near the RMW, deeper and more concentrated strong updrafts close to the RMW, and weaker inflow in the outer core region than those with a slowly decaying tangential wind profile (“broad” vortices). The narrow TCs also tend to intensify faster than broad TCs, suggesting that a key relationship exists among vortex shape, the BL kinematic structure, and TC intensity change. This relationship is further explored by comparisons of absolute angular momentum budget terms for each vortex shape. 
    more » « less